Asymptotic and constructive methods for covering perfect hash families and covering arrays

被引:0
|
作者
Charles J. Colbourn
Erin Lanus
Kaushik Sarkar
机构
[1] Arizona State University,Computing, Informatics, and Decision Systems Engineering
来源
关键词
Covering array; Covering perfect hash family; Conditional expectation algorithm; Asymptotic bound; 05B40; 05B15; 05D40; 05E18; 51E20;
D O I
暂无
中图分类号
学科分类号
摘要
Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k≤75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 75$$\end{document} for strength seven, k≤200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 200$$\end{document} for strength six, k≤600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 600$$\end{document} for strength five, and k≤2500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 2500$$\end{document} for strength four. When v>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v > 3$$\end{document}, almost all known explicit constructions are improved upon. For strength t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document}, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document} and k≤10,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 10{,}000$$\end{document} again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.
引用
收藏
页码:907 / 937
页数:30
相关论文
共 50 条
  • [41] Binary consecutive covering arrays
    Godbole, A. P.
    Koutras, M. V.
    Milienos, F. S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (03) : 559 - 584
  • [42] On Covering Radius of Orthogonal Arrays
    Boumova, Silvia
    Ramaj, Tedis
    Stoyanova, Maya
    PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020, 2020, : 23 - 28
  • [43] Problems and algorithms for covering arrays
    Hartman, A
    Raskin, L
    DISCRETE MATHEMATICS, 2004, 284 (1-3) : 149 - 156
  • [44] Binary consecutive covering arrays
    A. P. Godbole
    M. V. Koutras
    F. S. Milienos
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 559 - 584
  • [45] A Permutation Representation of Covering Arrays
    Dougherty, Ryan E.
    Jiang, Xi
    2021 IEEE/ACM INTERNATIONAL WORKSHOP ON GENETIC IMPROVEMENT (GI 2021), 2021, : 41 - 42
  • [46] Covering arrays of strength three
    Chateauneuf, MA
    Colbourn, CJ
    Kreher, DL
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (03) : 235 - 242
  • [47] RECONFIGURATION OF VLSI ARRAYS BY COVERING
    LOMBARDI, F
    SAMI, MG
    STEFANELLI, R
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1989, 8 (09) : 952 - 965
  • [48] Group construction of covering arrays
    Meagher, K
    Stevens, B
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 70 - 77
  • [49] Randomized Postoptimization of Covering Arrays
    Nayeri, Peyman
    Colbourn, Charles J.
    Konjevod, Goran
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 408 - 419
  • [50] A Survey of Binary Covering Arrays
    Lawrence, Jim
    Kacker, Raghu N.
    Lei, Yu
    Kuhn, D. Richard
    Forbes, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):