Asymptotic and constructive methods for covering perfect hash families and covering arrays

被引:0
|
作者
Charles J. Colbourn
Erin Lanus
Kaushik Sarkar
机构
[1] Arizona State University,Computing, Informatics, and Decision Systems Engineering
来源
关键词
Covering array; Covering perfect hash family; Conditional expectation algorithm; Asymptotic bound; 05B40; 05B15; 05D40; 05E18; 51E20;
D O I
暂无
中图分类号
学科分类号
摘要
Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k≤75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 75$$\end{document} for strength seven, k≤200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 200$$\end{document} for strength six, k≤600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 600$$\end{document} for strength five, and k≤2500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 2500$$\end{document} for strength four. When v>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v > 3$$\end{document}, almost all known explicit constructions are improved upon. For strength t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document}, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document} and k≤10,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 10{,}000$$\end{document} again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.
引用
收藏
页码:907 / 937
页数:30
相关论文
共 50 条
  • [1] Asymptotic and constructive methods for covering perfect hash families and covering arrays
    Colbourn, Charles J.
    Lanus, Erin
    Sarkar, Kaushik
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 907 - 937
  • [2] COVERING PERFECT HASH FAMILIES AND COVERING ARRAYS OF HIGHER INDEX
    Colbourn, Charles j.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2024, 13 (03) : 293 - 305
  • [3] Covering arrays and hash families
    Colbourn, Charles J.
    INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 99 - 135
  • [4] Improved covering arrays using covering perfect hash families with groups of restricted entries
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [5] Heterogeneous Hash Families and Covering Arrays
    Colbourn, Charles J.
    Torres-Jimenez, Jose
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 3 - +
  • [6] Summary of In -Parameter -Order strategies for covering perfect hash families
    Wagner, Michael
    Colbourn, Charles J.
    Simos, Dimitris E.
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW, 2023, : 268 - 270
  • [7] A Simulated Annealing Algorithm to Construct Covering Perfect Hash Families
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [8] In-Parameter-Order strategies for covering perfect hash families
    Wagner, Michael
    Colbourn, Charles J.
    Simos, Dimitris E.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 421
  • [9] Perfect sequence covering arrays
    Raphael Yuster
    Designs, Codes and Cryptography, 2020, 88 : 585 - 593
  • [10] Perfect sequence covering arrays
    Yuster, Raphael
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (03) : 585 - 593