Solid–fluid sequentially coupled simulation of internal erosion of soils due to seepage

被引:0
|
作者
Yanzhou Yin
Yifei Cui
Yao Tang
Dingzhu Liu
Mingyu Lei
Dave Chan
机构
[1] Chinese Academy of Sciences (CAS),Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment
[2] Tsinghua University,State Key Laboratory of Hydroscience and Engineering
[3] University of Chinese Academy of Sciences,MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, College of Civil Engineering and Architecture, Center for Hypergravity Experimental and Interdisciplinary Research
[4] Zhejiang University,Department of Civil and Environmental Engineering
[5] University of Alberta,undefined
来源
Granular Matter | 2021年 / 23卷
关键词
Wide-grading soil; Rainfall infiltration; Internal erosion of soil; Discrete element method sequentially coupled with Darcy’s flow model; Fine particle migration; Landslides;
D O I
暂无
中图分类号
学科分类号
摘要
Loose wide-grading soils are commonly found in the source areas of debris flows, and in landslides after an earthquake. During rainfall events, fine particles (fines) in the soils gradually migrate downward, and eventually the loss of fines results in an increase in the pore volume of the soil and a reduction in the stability of the soil skeleton, which can lead to subsequent slope failure. To gain more understanding of the fine migration process at the microscopic scale, a 3D discrete element-fluid flow sequentially coupled model is developed, based on Darcy’s Law, to simulate fluid flow through a porous medium and calculate the transportation of soil solids. The erosion model is verified using experimental data. Parametric studies are carried out to investigate the effects of coarse particle size. The results reveal that changes in pore structure caused by fine particle migration can change the local permeability of the material. For the case of the average pore throat diameter to fine particle ratio (J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}) of 2.41, changes in local porosity with time from internal erosion in the sample can be divided into four stages: (1) a rapid increase with some variations in porosity, (2) a slow increase in porosity, (3) a rapid increase in porosity, and (4) a steady state with no change in porosity. Not all stages are present for all value of  J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}. Stages (1) (2) (4) are present for 2.48 ≤  J≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\le$$\end{document} 2.58 and stages (1) (4) are present for J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} ≤  2.24 and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\hspace{0.17em}$$\end{document}≥ 2.74. A sharp increase in the fine’s erosion possibility occurs for a J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} value lies between 2.58 and 2.74. The erosion possibility sensibility shows an exponential relationship with J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}. The model provides an effective and efficient way to investigate the process of pore blockage and internal soil erosion.
引用
收藏
相关论文
共 50 条
  • [21] Erosion Due to Solid Particle Impact on the Turbine Blade: Experiment and Simulation
    Taherkhani, Bahman
    Anaraki, Ali Pourkamali
    Kadkhodapour, Javad
    Farahani, Nahid Kangarani
    Tu, Haoyun
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2019, 19 (06) : 1739 - 1744
  • [22] Coupled Simulation Analysis of River Levee Erosion Mechanisms and Internal Levee Flooding
    Lee, Fong-Zuo
    Lai, Jihn-Sung
    Chang, Tsang-Jung
    Liu, Cheng-Chi
    Huang, Yi-Jia
    Journal of Taiwan Agricultural Engineering, 2024, 70 (04):
  • [23] Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow
    Ke, Lin
    Takahashi, Akihiro
    SOILS AND FOUNDATIONS, 2012, 52 (04) : 698 - 711
  • [24] Coupled CFD-DEM modeling of surface erosion in granular soils: simulation of erosion function apparatus experiments
    Ham, Soo -Min
    Zhang, Kun
    Petrie, John
    Kwon, Tae-Hyuk
    CANADIAN GEOTECHNICAL JOURNAL, 2025, 62
  • [25] A fluid-solid coupled modeling on water seepage through gasketed joint of segmented tunnels
    Zhou, Wenfeng
    Liao, Shaoming
    Men, Yanqing
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2021, 114
  • [26] Fluid-solid coupled simulation of the ignition transient of solid rocket motor
    Li, Qiang
    Liu, Peijin
    He, Guoqiang
    ACTA ASTRONAUTICA, 2015, 110 : 180 - 190
  • [27] Stability study of fluid-solid coupled dynamic system of seepage in accumulative broken rock
    Shuncai Li
    Nong Zhang
    Qiang Li
    Slatin Vadim
    Arabian Journal of Geosciences, 2020, 13
  • [28] Stability study of fluid-solid coupled dynamic system of seepage in accumulative broken rock
    Li, Shuncai
    Zhang, Nong
    Li, Qiang
    Vadim, Slatin
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (14)
  • [29] One method of Fluid-Solid coupled interaction simulation
    Lin, Y. W.
    You, X. C.
    Zhuang, Z.
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 1095 - 1100
  • [30] A generalized interpolation material point method for modelling coupled seepage-erosion-deformation process within unsaturated soils
    Lei, Xiaoqin
    He, Siming
    Chen, Xiaoqing
    Wong, Henry
    Wu, Lizhou
    Liu, Enlong
    ADVANCES IN WATER RESOURCES, 2020, 141