On shock-capturing schemes using artificial wind

被引:0
|
作者
I.V. Sokolov
E.V. Timofeev
J. Sakai
K. Takayama
机构
[1] Laboratory for Plasma Astrophysics,
[2] Faculty of Engineering,undefined
[3] Toyama University,undefined
[4] 3190 Gofuku,undefined
[5] Toyama 930-8555,undefined
[6] Japan ,undefined
[7] Shock Wave Research Center,undefined
[8] Institute of Fluid Science,undefined
[9] Tohoku University,undefined
[10] 2-1-1 Katahira,undefined
[11] Aoba-ku,undefined
[12] Sendai 980-8577,undefined
[13] Japan ,undefined
来源
Shock Waves | 1999年 / 9卷
关键词
Key words:Galilean transformation, Shock-capturing scheme, Artificial wind;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and apply a new way for the construction of efficient non-oscillatory shock-capturing schemes for fluid dynamic and magneto-hydro-dynamic simulations. The basic idea is to solve the governing equations in different steadily moving frames of reference chosen in such a way that the flow would be supersonic there resulting in simple upwind formulas for fluxes across control volume faces. An extra velocity (artificial wind) is added to the velocity of the flow under simulation when the system of coordinates is changed. The approach allows to simplify existing schemes and to get new modifications. Test problems demonstrate that the derived schemes provide accurate results while being simple and efficient.
引用
收藏
页码:423 / 427
页数:4
相关论文
共 50 条
  • [21] An enthalpy-preserving shock-capturing term for residual distribution schemes
    Garicano-Mena, J.
    Degrez, G.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 88 (08) : 385 - 411
  • [22] EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES
    SHU, CW
    OSHER, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (02) : 439 - 471
  • [23] Exploring shock-capturing schemes for Particles on Demand simulation of compressible flows
    Reyhanian, Ehsan
    Dorschner, Benedikt
    Karlin, Ilya
    [J]. COMPUTERS & FLUIDS, 2023, 263
  • [24] Fully discrete high-order shock-capturing numerical schemes
    Shi, J
    Toro, EF
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 23 (03) : 241 - 269
  • [25] Comparative study of Roe, RHLL and Rusanov fluxes for shock-capturing schemes
    Darwis, Malina
    Abdullah, Kamil
    Mohammed, Akmal Nizam
    [J]. 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS IN RESEARCH AND INDUSTRY (CFDRI 2017), 2017, 243
  • [26] Enhanced fifth order WENO shock-capturing schemes with deep learning
    Kossaczka, Tatiana
    Ehrhardt, Matthias
    Guenther, Michael
    [J]. RESULTS IN APPLIED MATHEMATICS, 2021, 12
  • [27] Practical aspects in comparing shock-capturing schemes for dam break problems
    Macchione, F
    Morelli, MA
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2003, 129 (03): : 187 - 195
  • [28] On Convergence of Finite-Difference Shock-Capturing Schemes in Regions of Shock Waves Influence
    Kovyrkina, O. A.
    Ostapenko, V. V.
    Tishkin, V. F.
    [J]. DOKLADY MATHEMATICS, 2022, 105 (03) : 171 - 174
  • [29] On Convergence of Finite-Difference Shock-Capturing Schemes in Regions of Shock Waves Influence
    O. A. Kovyrkina
    V. V. Ostapenko
    V. F. Tishkin
    [J]. Doklady Mathematics, 2022, 105 (3) : 171 - 174
  • [30] Investigation of interaction between shock waves and flow disturbances with different shock-capturing schemes
    Kudryavtsev, A. N.
    Khotyanovsky, D. V.
    Epshtein, D. B.
    [J]. SHOCK WAVES, VOL 2, PROCEEDINGS, 2009, : 1023 - 1028