Gauss-Hermite Quadrature Approximation for Estimation in Generalised Linear Mixed Models

被引:1
|
作者
Jianxin Pan
Robin Thompson
机构
[1] Keele University,The Centre of Medical Statistics, Department of Mathematics
[2] IACR-Rothamsted,Statistics Department
来源
Computational Statistics | 2003年 / 18卷
关键词
Gauss-Hermite quadrature; Generalised linear mixed models; Maximum likelihood estimates; Newton-Raphson algorithm; Random effects;
D O I
暂无
中图分类号
学科分类号
摘要
This paper provides a unified algorithm to explicitly calculate the maximum likelihood estimates of parameters in a general setting of generalised linear mixed models (GLMMs) in terms of Gauss-Hermite quadrature approximation. The score function and observed information matrix are expressed explicitly as analytically closed forms so that Newton-Raphson algorithm can be applied straightforwardly. Compared with some existing methods, this approach can produce more accurate estimates of the fixed effects and variance components in GLMMs, and can serve as a basis of assessing existing approximations in GLMMs. A simulation study and practical example analysis are provided to illustrate this point.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
  • [31] Covariance Consistency for Track Initiation using Gauss-Hermite Quadrature
    Horwood, Joshua T.
    Aragon, Nathan D.
    Poore, Aubrey B.
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2010, 2010, 7698
  • [32] Maximum Correntropy Square Root Gauss-Hermite Quadrature Information Filter for Multiple Sensor Estimation
    Tao Lu
    Weidong Zhou
    Zimo Fan
    Hongchen Bian
    Circuits, Systems, and Signal Processing, 2023, 42 : 6296 - 6323
  • [33] Using an approximation of the three-point Gauss-Hermite quadrature formula for model prediction and quantification of uncertainty
    Levy, J
    Clayton, MK
    Chesters, G
    HYDROGEOLOGY JOURNAL, 1998, 6 (04) : 457 - 468
  • [34] Maximum Correntropy Square Root Gauss-Hermite Quadrature Information Filter for Multiple Sensor Estimation
    Lu, Tao
    Zhou, Weidong
    Fan, Zimo
    Bian, Hongchen
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (10) : 6296 - 6323
  • [35] NONEXISTENCE OF EXTENDED GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE RULES WITH POSITIVE WEIGHTS
    KAHANER, DK
    MONEGATO, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (06): : 983 - 986
  • [36] Conditional Gauss-Hermite Filtering With Application to Volatility Estimation
    Singer, Hermann
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2476 - 2481
  • [37] Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature
    Challa, S
    Bar-Shalom, Y
    Krishnamurthy, V
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1816 - 1820
  • [38] Computational Guidance Using Sparse Gauss-Hermite Quadrature Differential Dynamic Programming
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    IFAC PAPERSONLINE, 2019, 52 (12): : 13 - 18
  • [39] SUBOPTIMALITY OF GAUSS-HERMITE QUADRATURE AND OPTIMALITY OF THE TRAPEZOIDAL RULE FOR FUNCTIONS WITH FINITE SMOOTHNESS*
    Kazashi, Yoshihito
    Suzuki, Yuya
    Goda, Takashi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1426 - 1448
  • [40] Target Tracking Algorithm based on Gauss-Hermite Quadrature in Passive Sensor Array
    Hao, Run-ze
    Huang, Jing-xiong
    Li, Liang-qun
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 2625 - +