Stability criterion for a family of nonlocal difference schemes

被引:0
|
作者
A. V. Gulin
V. A. Morozova
N. S. Udovichenko
机构
[1] Moscow State University,
来源
Differential Equations | 2010年 / 46卷
关键词
Stability Criterion; Energy Norm; Adjoint Operator; Left Boundary; Nonlocal Boundary Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider finite-difference schemes for the heat equation with nonlocal boundary conditions that contain a real parameter γ. A stability criterion for finite-difference schemes with respect to the initial data was earlier obtained for |γ| ≤ 1. In the present paper, we consider the case in which γ ∈ (−cosh π,−1) and the original differential problem is stable, while the stability conditions for the finite-difference schemes substantially depend on γ. We obtain estimates for the energy norm of the solution of the finite-difference problem via the same norm of the initial data and prove the equivalence of the energy norm and the grid L2-norm.
引用
收藏
页码:973 / 990
页数:17
相关论文
共 50 条
  • [21] Computational Experiment for Stability Analysis of Difference Schemes with Nonlocal Conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Joksiene, Zivile
    Meskauskas, Tadas
    INFORMATICA, 2013, 24 (02) : 275 - 290
  • [22] Family of self-adjoint Nonlocal finite-difference schemes
    A. V. Gulin
    V. A. Morozova
    Differential Equations, 2008, 44 : 1297 - 1304
  • [23] Family of self-adjoint Nonlocal finite-difference schemes
    Gulin, A. V.
    Morozova, V. A.
    DIFFERENTIAL EQUATIONS, 2008, 44 (09) : 1297 - 1304
  • [24] On the stability of explicit finite difference schemes for a pseudoparabolic equation with nonlocal conditions
    Jachimaviciene, Justina
    Sapagovas, Mifodijus
    Stikonas, Arturas
    Stikoniene, Olga
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2014, 19 (02): : 225 - 240
  • [25] The Stability of Finite-Difference Schemes for a Pseudoparabolic Equation with Nonlocal Conditions
    Jachimaviciene, J.
    Jeseviciute, Z.
    Sapagovas, M.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) : 988 - 1001
  • [26] Stability of a family of weighted finite-difference schemes
    Gulin A.V.
    Mokin A.Yu.
    Computational Mathematics and Modeling, 2009, 20 (2) : 152 - 172
  • [27] STABILITY-CRITERIA FOR A FAMILY OF DIFFERENCE-SCHEMES
    SAMARSKY, AA
    GULIN, AV
    DOKLADY AKADEMII NAUK, 1993, 330 (06) : 694 - 695
  • [28] On the question about the sufficiency of the von Neumann criterion for stability of difference schemes
    Scobelev, BY
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (01) : 278 - 282
  • [29] On stability and convergence of difference schemes for one class of parabolic equations with nonlocal condition
    Sapagovas, Mifodijus
    Novickij, Jurij
    Pupalaige, Kristina
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2025, 30 (01): : 135 - 155
  • [30] Test functions for nonlocal difference schemes
    Gulin A.V.
    Computational Mathematics and Modeling, 2013, 24 (1) : 31 - 53