Nonorthogonal multiple access with adaptive transmit power and energy harvesting using intelligent reflecting surfaces for cognitive radio networks

被引:0
|
作者
Raed Alhamad
机构
[1] Saudi Electronic University, Department of Computer Science, College of Computation and Informatics
来源
关键词
IRS; Energy harvesting; Adaptive transmit power; Cognitive radio networks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive the throughput of cognitive radio networks (CRN) where the secondary source SS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_S$$\end{document} harvests energy and adapts its power to generate an interference at primary destination PD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_D$$\end{document} less than T. SS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_S$$\end{document} transmits a linear combination of symbols to K nonorthogonal multiple access (NOMA) users. Intelligent reflecting surfaces (IRS) are placed between the secondary source and NOMA users. A set Ii\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_i$$\end{document} of reflectors of IRS is dedicated to user Ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_i$$\end{document} so that all reflections are in phase at Ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_i$$\end{document}. We derive the throughput at each user and the total throughput when IRS are used in CRN-NOMA. We optimize the NOMA powers as well as the harvesting duration α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. When Ni=8,32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_i=8,32$$\end{document} reflectors per user are employed, we obtain 24 and 41 dB gain with respect to CRN-NOMA with adaptive transmit power, energy harvesting and without IRS.
引用
收藏
页码:83 / 89
页数:6
相关论文
共 50 条
  • [41] Reconfigurable Intelligent Surfaces Using Non Orthogonal Multiple Access and Solar Energy Harvesting
    Raed Alhamad
    Hatem Boujemaa
    Wireless Personal Communications, 2023, 130 : 2659 - 2678
  • [42] Price-based time and energy allocation in cognitive radio multiple access networks with energy harvesting
    Ding Xu
    Qun Li
    Science China Information Sciences, 2017, 60
  • [43] Price-based time and energy allocation in cognitive radio multiple access networks with energy harvesting
    Ding XU
    Qun LI
    Science China(Information Sciences), 2017, 60 (10) : 258 - 260
  • [44] Price-based time and energy allocation in cognitive radio multiple access networks with energy harvesting
    Xu, Ding
    Li, Qun
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (10)
  • [45] Intelligent Secure Communication for Cognitive Networks With Multiple Primary Transmit Power
    Lai, Shiwei
    Xia, Junjuan
    Zou, Dan
    Fan, Liseng
    IEEE ACCESS, 2020, 8 : 37343 - 37351
  • [46] Robust Secure Beamforming Design for Cooperative Cognitive Radio Nonorthogonal Multiple Access Networks
    Li, Quanzhong
    Zhao, Sai
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [47] Joint spectrum access and transmission power management for energy harvesting cognitive radio sensor networks
    Zhang, Fan
    Jing, Tao
    Huo, Yan
    Jiang, Kaiwei
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2018, 27 (02) : 103 - 116
  • [48] Optimal Power Control for Energy Harvesting Cognitive Radio Networks
    He, Peter
    Zhao, Lian
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 92 - 97
  • [49] Securing hybrid channel access cognitive radio networks with energy harvesting
    Tayel, Ahmed F.
    Abd El-Malek, Ahmed H.
    Rabia, Sherif, I
    Abdelrazek, Amr M.
    PHYSICAL COMMUNICATION, 2021, 45
  • [50] Opportunistic Channel Access and RF Energy Harvesting in Cognitive Radio Networks
    Dinh Thai Hoang
    Niyato, Dusit
    Wang, Ping
    Kim, Dong In
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (11) : 2039 - 2052