Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems

被引:0
|
作者
Franck Risler
Christian Rey
机构
[1] UPRESA 8007 du C.N.R.S.,Laboratoire de Modélisation et Mécanique des Structures
来源
Numerical Algorithms | 2000年 / 23卷
关键词
iterative approach; conjugate gradient; Krylov subspaces; superconvergence; Ritz values; nonlinear optimization; parallel supercomputing; 65B99; 65Y05;
D O I
暂无
中图分类号
学科分类号
摘要
Discrete solution to nonlinear systems problems that leads to a series of linear problems associated with non-invariant large-scale sparse symmetric positive matrices is herein considered. Each linear problem is solved iteratively by a conjugate gradient method. We introduce in this paper new solvers (IRKS, GIRKS and D-GIRKS) that rely on an iterative reuse of Krylov subspaces associated with previously solved linear problems. Numerical assessments are provided on large-scale engineering applications. Considerations related to parallel supercomputing are also addressed.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [1] Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems
    Risler, F
    Rey, C
    [J]. NUMERICAL ALGORITHMS, 2000, 23 (01) : 1 - 30
  • [2] SOLUTION OF LARGE SCALE EVOLUTIONARY PROBLEMS USING RATIONAL KRYLOV SUBSPACES WITH OPTIMIZED SHIFTS
    Druskin, Vladimir
    Knizhnerman, Leonid
    Zaslavsky, Mikhail
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3760 - 3780
  • [3] Adaptive rational Krylov subspaces for large-scale dynamical systems
    Druskin, V.
    Simoncini, V.
    [J]. SYSTEMS & CONTROL LETTERS, 2011, 60 (08) : 546 - 560
  • [4] ITERATIVE AGGREGATION - NEW APPROACH TO THE SOLUTION OF LARGE-SCALE PROBLEMS
    VAKHUTINSKY, IY
    DUDKIN, LM
    RYVKIN, AA
    [J]. ECONOMETRICA, 1979, 47 (04) : 821 - 841
  • [5] Recycling Krylov subspaces for efficient large-scale electrical impedance tomography
    Motta Mello, Luis Augusto
    de Sturler, Eric
    Paulino, Glaucio H.
    Nelli Silva, Emilio Carlos
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (49-52) : 3101 - 3110
  • [6] A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems
    Christian Rey
    Franck Risler
    [J]. Numerical Algorithms, 1998, 17 : 279 - 311
  • [7] AN EFFICIENT ITERATIVE APPROACH FOR LARGE-SCALE SEPARABLE NONLINEAR INVERSE PROBLEMS
    Chung, Julianne
    Nagy, James G.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06): : 4654 - 4674
  • [8] AI-enhanced iterative solvers for accelerating the solution of large-scale parametrized systems
    Nikolopoulos, Stefanos
    Kalogeris, Ioannis
    Stavroulakis, George
    Papadopoulos, Vissarion
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (02)
  • [9] Reduction of large-scale dynamical systems by the Krylov subspaces method: Analysis of approaches
    N. E. Zubov
    E. A. Mikrin
    M. Sh. Misrikhanov
    A. V. Proletarskii
    V. N. Ryabchenko
    [J]. Journal of Computer and Systems Sciences International, 2015, 54 : 165 - 183
  • [10] Reduction of large-scale dynamical systems by the Krylov subspaces method: Analysis of approaches
    Zubov, N. E.
    Mikrin, E. A.
    Misrikhanov, M. Sh.
    Proletarskii, A. V.
    Ryabchenko, V. N.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2015, 54 (02) : 165 - 183