Reduction of large-scale dynamical systems by the Krylov subspaces method: Analysis of approaches

被引:0
|
作者
Zubov, N. E. [1 ]
Mikrin, E. A.
Misrikhanov, M. Sh.
Proletarskii, A. V.
Ryabchenko, V. N.
机构
[1] Bauman State Tech Univ, Moscow 105005, Russia
关键词
EIGENVALUE PROBLEM; MATRIX;
D O I
10.1134/S1064230715020148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approaches and numerical algorithms for reducing the order of mathematical models of multidimensional dynamical systems that are based on the Krylov's subspaces method are described. To calculate matrices representing the reduced models in the state space, Lanczos' and Arnoldi's methods are used. Practical examples of the reduction of large-scale systems are presented.
引用
收藏
页码:165 / 183
页数:19
相关论文
共 50 条