Taylor coefficients;
univalent functions;
Löwner’s method;
optimization;
30C75;
49K15;
D O I:
10.1007/BF03321005
中图分类号:
学科分类号:
摘要:
Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\cal S$\end{document} denote the class of normalized schlicht functions in the unit disk. We consider for f ∊ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal S}$\end{document} and λ < 0 the Taylor coefficients an (λ, f) of (f(z)/z)λ and prove that ∣an(λ, f)∣ ≤ ∣an(λ, k)∣ for every f ∈ S and every 1 ≤ n ≤ − λ + 1, where k(z) = z(l − z)−2 is the Koebe function. We also give a necessary condition such that the Koebe function maximizes the functional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum_{k=1}^n \sigma_k \mid a_k(\lambda,f) \mid^2$$\end{document} in the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal S}$\end{document} for given weights σk ∈ R. These results supplement and complement previous results due to de Branges, Hayman and Hummel and others. Our proofs are based on the Löwner differential equation combined with optimal control methods.
机构:
Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, FranceUniv Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France
Fischler, Stephan
Rivoal, Tanguy
论文数: 0引用数: 0
h-index: 0
机构:
Inst Fourier, CNRS, CS 40700, F-38058 Grenoble 9, France
Univ Grenoble Alpes, CS 40700, F-38058 Grenoble 9, FranceUniv Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France