Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\cal S$\end{document} denote the class of normalized schlicht functions in the unit disk. We consider for f ∊ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal S}$\end{document} and λ < 0 the Taylor coefficients an (λ, f) of (f(z)/z)λ and prove that ∣an(λ, f)∣ ≤ ∣an(λ, k)∣ for every f ∈ S and every 1 ≤ n ≤ − λ + 1, where k(z) = z(l − z)−2 is the Koebe function. We also give a necessary condition such that the Koebe function maximizes the functional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum_{k=1}^n \sigma_k \mid a_k(\lambda,f) \mid^2$$\end{document} in the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal S}$\end{document} for given weights σk ∈ R. These results supplement and complement previous results due to de Branges, Hayman and Hummel and others. Our proofs are based on the Löwner differential equation combined with optimal control methods.