Improvement on 2-Chains Inside Thin Subsets of Euclidean Spaces

被引:0
|
作者
Bochen Liu
机构
[1] Bar-Ilan University,Department of Mathematics
来源
关键词
Distance problem; Spherical averages; Falconer distance conjecture; Spherical averages; Group action reduction; Chains; 28A75; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
Given E⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\subset \mathbb {R}^d$$\end{document}, d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, we prove that when dimH(E)>d2+13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim _{{\mathcal {H}}}(E)>\frac{d}{2}+\frac{1}{3}$$\end{document}, the set of gaps of 2-chains inside E, i.e., Δ2(E)={(|x-y|,|y-z|):x,y,z∈E}⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _2(E)=\{(|x-y|, |y-z|): x, y, z\in E \}\subset \mathbb {R}^2 \end{aligned}$$\end{document}has positive Lebesgue measure. This improves a result of Bennett, Iosevich, and Taylor. We also consider when the set of similarity classes of 2-chains, S2(E)=t1t2:(t1,t2)∈Δ2(E)=|x-y||y-z|:x,y,z∈E⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_2(E)=\left\{ \frac{t_1}{t_2}:(t_1,t_2)\in \Delta _2(E)\right\} =\left\{ \frac{|x-y|}{|y-z|}: x, y, z\in E \right\} \subset \mathbb {R} \end{aligned}$$\end{document}has positive Lebesgue measure. The main idea in this paper is to reduce geometric problems to integrals where Wolff-Erdoğan’s spherical averaging estimates apply. Invariant measures on orthogonal groups play an important role in the reduction.
引用
收藏
页码:3520 / 3539
页数:19
相关论文
共 50 条
  • [1] Improvement on 2-Chains Inside Thin Subsets of Euclidean Spaces
    Liu, Bochen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3520 - 3539
  • [2] SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES
    Iosevich, Alex
    Magyar, Akos
    [J]. ANALYSIS & PDE, 2023, 16 (07): : 1485 - 1496
  • [3] FINITE CHAINS INSIDE THIN SUBSETS OF Rd
    Bennett, Michael
    Iosevich, Alexander
    Taylor, Krystal
    [J]. ANALYSIS & PDE, 2016, 9 (03): : 597 - 614
  • [4] 2-chains: An interesting family of posets
    Fayers, Matthew
    [J]. DISCRETE MATHEMATICS, 2020, 343 (09)
  • [5] Volume Distortion for Subsets of Euclidean Spaces
    Lee, James R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (04) : 590 - 615
  • [6] Volume Distortion for Subsets of Euclidean Spaces
    James R. Lee
    [J]. Discrete & Computational Geometry, 2009, 41 : 590 - 615
  • [7] Homotopy properties of subsets of Euclidean spaces
    Passandideh, Hadi
    Ghane, F. H.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 194 : 202 - 211
  • [8] EFFICIENT CONSTRUCTION OF 2-CHAINS WITH A PRESCRIBED BOUNDARY
    Rodriguez, Ana Alonso
    Bertolazzi, Enrico
    Ghiloni, Riccardo
    Specogna, Ruben
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1159 - 1187
  • [9] AN AXIOMATIC CHARACTERIZATION OF THE DIMENSION OF SUBSETS OF EUCLIDEAN SPACES
    HAYASHI, Y
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1990, 37 (01) : 83 - 92
  • [10] Some properly critical subsets of Euclidean spaces
    Pintea, Cornel
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (01): : 120 - 130