Female pelvic floor dysfunction encompasses a number of prevalent clinical conditions, including female pelvic organ prolapse, urinary and fecal incontinence, obstructed defecation, and sexual dysfunction. In most cases, neither etiology nor pathophysiology are well understood. Imaging has great potential to enhance both our research and clinical management capabilities in this field, and to date this potential is underutilised. Of the available techniques such as X-ray, computed tomography, magnetic resonance imaging, and ultrasound, the last is generally superior for pelvic floor imaging, especially in the form of perineal or translabial imaging. The technique is safe, simple, cheap, and easily accessible, and provides high spatial and temporal resolutions. Translabial or perineal ultrasound is useful in determining residual urinary volume, detrusor wall thickness, and bladder neck mobility, and in assessing pelvic organ prolapse as well as levator function and anatomy. It is also useful for the evaluation of obstructed defecation and fecal incontinence. It is at least equivalent to other imaging techniques in diagnosing conditions as diverse as urethral diverticulum, rectal intussusception, and avulsion of the puborectalis muscle. Ultrasound is currently the only imaging method capable of visualizing modern slings and mesh implants, and it may help in selecting patients for prolapse mesh surgery by identifying those most at risk of recurrence. Birth trauma to the levator ani muscle seems to be the central etiological factor for pelvic organ prolapse and recurrence after prolapse surgery, and it is easily diagnosed by pelvic floor ultrasound. Similarly, delivery-related trauma to the external and internal anal sphincter is central to the aetiology of anal incontinence in women and is equally easily diagnosed using either endo- or exoanal (translabial or perineal) ultrasound. This review will focus on translabial/perineal ultrasound as the least invasive, cheapest, simplest, and most commonly available method for pelvic floor imaging. I will discuss the main current uses of the method in clinical practice and research, and will try and provide a perspective for likely future developments in this field.