On Some Properties of Relative Capacity and Thinness in Weighted Variable Exponent Sobolev Spaces

被引:0
|
作者
C. Unal
I. Aydin
机构
[1] Assessment,Department of Mathematics, Faculty of Arts and Sciences
[2] Selection and Placement Center,undefined
[3] Sinop University,undefined
来源
Analysis Mathematica | 2020年 / 46卷
关键词
weighted variable exponent Sobolev space; relative capacity; Sobolev capacity; thinness; primary 32U20; 31B15; secondary 46E35; 43A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define the weighted relative p(.)-capacity and discuss its properties in the space Wϑ1,p(.)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_\vartheta ^{1,p(.)}({\mathbb{R}^n})$$\end{document}. Also, we investigate some properties of the weighted variable Sobolev capacity. It is shown that there is a relation between these two capacities. Moreover, we introduce the notion of thinness related to this newly defined relative capacity and prove an equivalence statement for this thinness.
引用
收藏
页码:147 / 167
页数:20
相关论文
共 50 条
  • [31] The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces
    Aydin, Ismail
    Unal, Cihan
    COLLECTANEA MATHEMATICA, 2020, 71 (03) : 349 - 367
  • [32] Some results of capacity in fractional Sobolev spaces with variable exponents
    Youssef Akdim
    Rachid Elharch
    M. C. Hassib
    Soumia Lalaoui Rhali
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 93 - 106
  • [33] Some results of capacity in fractional Sobolev spaces with variable exponents
    Akdim, Youssef
    Elharch, Rachid
    Hassib, M. C.
    Rhali, Soumia Lalaoui
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 93 - 106
  • [34] On Some Properties of Convolutions in Variable Exponent Lebesgue Spaces
    Daniyal M. Israfilov
    Elife Yirtici
    Complex Analysis and Operator Theory, 2017, 11 : 1817 - 1824
  • [35] On Some Properties of Convolutions in Variable Exponent Lebesgue Spaces
    Israfilov, Daniyal M.
    Yirtici, Elife
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (08) : 1817 - 1824
  • [36] BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS ON VARIABLE EXPONENT WEIGHTED FRACTIONAL SOBOLEV-MORREY SPACES
    Kalleji, Morteza koozehgar
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2025, 2025
  • [37] ON A NONLINEAR EIGENVALUE PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Dinu, T-L
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 208 - 217
  • [38] ON A NONHOMOGENOUS QUASILINEAR PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Ben Ali, Khaled
    Bezzarga, Mounir
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 21 - +
  • [39] Continuity of Sobolev functions of variable exponent on metric spaces
    Mizuta, Y
    Shimomura, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (06) : 96 - 99
  • [40] Geometric rigidity on Sobolev spaces with variable exponent and applications
    Almi, Stefano
    Caponi, Maicol
    Friedrich, Manuel
    Solombrino, Francesco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (01):