On Some Properties of Relative Capacity and Thinness in Weighted Variable Exponent Sobolev Spaces

被引:0
|
作者
C. Unal
I. Aydin
机构
[1] Assessment,Department of Mathematics, Faculty of Arts and Sciences
[2] Selection and Placement Center,undefined
[3] Sinop University,undefined
来源
Analysis Mathematica | 2020年 / 46卷
关键词
weighted variable exponent Sobolev space; relative capacity; Sobolev capacity; thinness; primary 32U20; 31B15; secondary 46E35; 43A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define the weighted relative p(.)-capacity and discuss its properties in the space Wϑ1,p(.)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_\vartheta ^{1,p(.)}({\mathbb{R}^n})$$\end{document}. Also, we investigate some properties of the weighted variable Sobolev capacity. It is shown that there is a relation between these two capacities. Moreover, we introduce the notion of thinness related to this newly defined relative capacity and prove an equivalence statement for this thinness.
引用
收藏
页码:147 / 167
页数:20
相关论文
共 50 条