In this article, we consider the existence of ground state sign-changing solutions to a class of Schrödinger–Poisson systems -Δu+Vλ(x)u+ϕu=|u|4u+μf(u),inR3,-Δϕ=u2,inR3,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V_{\lambda } (x)u+\phi u=|u|^4u+ \mu f(u), &{} ~\textrm{in}~~\mathbb {R}^3, \\ -\Delta \phi =u^2, &{} ~\textrm{in}~~\mathbb {R}^3, \end{array}\right. } \end{aligned}$$\end{document}where μ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu >0$$\end{document} and Vλ(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_{\lambda }(x)$$\end{document} = λV(x)+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda V(x)+1$$\end{document} with λ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda >0$$\end{document}. Under suitable conditions on f and V, by using the constraint variational method and quantitative deformation lemma, we prove that the above problem has one ground state sign-changing solution and the energy of ground state sign-changing solution is strictly more than twice the energy of the ground state solution. Furthermore, we also study the asymptotic behavior of ground state sign-changing solutions as λ→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda \rightarrow \infty $$\end{document}.