Effects of estimation techniques on generalised extreme value distribution (GEVD) parameters and their spatio-temporal variations

被引:1
|
作者
Iqbal Hossain
Monzur A. Imteaz
Anirban Khastagir
机构
[1] Swinburne University of Technology,
[2] RMIT University,undefined
关键词
GEVD parameters; MLE; GMLE; Bayesian; L-moments;
D O I
暂无
中图分类号
学科分类号
摘要
The application of generalised extreme value distribution (GEVD) requires the estimation of three parameters. Different researchers adopted different techniques for the estimation of the GEVD parameters and no standard comparison amongst those methods are available. This paper investigates the comparison of the commonly used GEVD parameters’ estimations for extreme rainfall modelling. The maximum likelihood estimation, generalised maximum likelihood estimation, Bayesian and L-moments methods were considered in this study to compare the magnitude of the GEVD parameters and the corresponding return level estimations. The analysis was performed using the monthly and yearly extreme rainfall of Tasmania, Australia. The GEVD was fitted to four different data sets using the four parameters estimation techniques. Estimated return levels of the GEVD for all the estimation techniques were compared with the return levels provided by the Australian Rainfall and Runoff (ARR), which is the national guideline for Australian rainfall and flood studies. The outcomes of the analysis suggest that the L-moments method is the better estimator of the return levels when comparing the ARR provided return levels.
引用
收藏
页码:2303 / 2312
页数:9
相关论文
共 50 条
  • [31] Spatio-temporal variations in the distribution of anopheline larval habitats in western Kenya highlands
    Munga, Stephen
    Mushinzimana, Emmanuel
    Minakawa, Noboru
    Zhou, Goufa
    Okeyo-Owuor, Joash
    Githeko, Andrew
    Yan, Guiyun
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2006, 75 (05): : 176 - 176
  • [32] On the extreme value statistics of spatio-temporal maximum sea waves under cyclone winds
    Benetazzo, Alvise
    Barbariol, Francesco
    Bergamasco, Filippo
    Bertotti, Luciana
    Yoo, Jeseon
    Shim, Jae-Seol
    Cavaleri, Luigi
    PROGRESS IN OCEANOGRAPHY, 2021, 197
  • [33] INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
    Opitz, Thomas
    Huser, Raphael
    Bakka, Haakon
    Rue, Havard
    EXTREMES, 2018, 21 (03) : 441 - 462
  • [34] INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
    Thomas Opitz
    Raphaël Huser
    Haakon Bakka
    Håvard Rue
    Extremes, 2018, 21 : 441 - 462
  • [35] A FREQUENCY DOMAIN APPROACH FOR THE ESTIMATION OF PARAMETERS OF SPATIO-TEMPORAL STATIONARY RANDOM PROCESSES
    Rao, Tata Subba
    Das, Sourav
    Boshnakov, Georgi N.
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (04) : 357 - 377
  • [36] Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda
    Saturday, Alex
    Lyimo, Thomas J.
    Machiwa, John
    Pamba, Siajali
    SN APPLIED SCIENCES, 2021, 3 (07):
  • [37] Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda
    Alex Saturday
    Thomas J. Lyimo
    John Machiwa
    Siajali Pamba
    SN Applied Sciences, 2021, 3
  • [38] Spatio-temporal distribution of thermal parameters in sheep house with slatted floor in winter
    Zhao S.
    Li X.
    Sun X.
    Che D.
    Zhang H.
    Wang X.
    Gao Y.
    Cheng S.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (10): : 159 - 165
  • [39] Estimation of photovoltaic waste spatio-temporal distribution by 2060 in the context of carbon neutrality
    Liu, Caijie
    Zhang, Qin
    Liu, Lingxuan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (12) : 34840 - 34855
  • [40] SIMPLE ESTIMATION OF PARAMETERS OF WEIBULL OR EXTREME-VALUE DISTRIBUTION
    ENGELHARDT, M
    TECHNOMETRICS, 1975, 17 (03) : 369 - 374