Monochromatic computed tomography using laboratory-scale setup

被引:0
|
作者
Ari-Pekka Honkanen
Simo Huotari
机构
[1] Helsinki University Hospital,Comprehensive Cancer Center
[2] University of Helsinki,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we demonstrate the viability of highly monochromatic full-field X-ray absorption near edge structure based tomography using a laboratory-scale Johann-type X-ray absorption spectrometer utilising a conventional X-ray tube source. In this proof-of-concept, by using a phantom embedded with elemental Se, Na2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}SeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}, and Na2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}SeO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}, we show that the three-dimensional distributions of Se in different oxidation states can be mapped and distinguished from the phantom matrix and each other with absorption edge contrast tomography. The presented method allows for volumetric analyses of chemical speciation in mm-scale samples using low-brilliance X-ray sources, and represents a new analytic tool for materials engineering and research in many fields including biology and chemistry.
引用
收藏
相关论文
共 50 条
  • [31] A laboratory-scale buried charge simulator
    McShane, G. J.
    Deshpande, V. S.
    Fleck, N. A.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2013, 62 : 210 - 218
  • [32] Quantification of runoff in laboratory-scale chambers
    Isensee, AR
    Sadeghi, AM
    CHEMOSPHERE, 1999, 38 (08) : 1733 - 1744
  • [33] Wood Biodegradation in Laboratory-Scale Landfills
    Wang, Xiaoming
    Padgett, Jennifer M.
    De la Cruz, Florentino B.
    Barlaz, Morton A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (16) : 6864 - 6871
  • [34] LABORATORY-SCALE MIRRORS FOR SUBMILLIMETER WAVELENGTHS
    DIONNE, GF
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1982, 3 (03): : 417 - 423
  • [35] Characterization of laboratory-scale tumbling mills
    Steiner, HJ
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1996, 44-5 : 373 - 382
  • [36] Laboratory-scale testing of titanium powder fire extinguishment using water
    Kostka, Stanislav
    FIRE SAFETY JOURNAL, 2023, 141
  • [37] Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system
    Marder, L
    Bernardes, AM
    Ferreira, JZ
    SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 37 (03) : 247 - 255
  • [38] A Study on Peripheral Grain Structure Evolution of an AA7050 Aluminum Alloy with a Laboratory-Scale Extrusion Setup
    Sun, Yiwei
    Bai, Xiaolong
    Klenosky, Daniel
    Trumble, Kevin
    Johnson, David
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (08) : 5156 - 5164
  • [39] Laboratory-Scale Production of Tomato Carotenoids Using Bioengineered Escherichia coli
    Lu, Chi-Hua
    Choi, Jin-Ho
    Jin, Yong-Su
    Erdman, John W., Jr.
    FASEB JOURNAL, 2011, 25
  • [40] Verification of Coupled Hydraulic Fracturing Simulators Using Laboratory-Scale Experiments
    Deb, Paromita
    Salimzadeh, Saeed
    Vogler, Daniel
    Dueber, Stephan
    Clauser, Christoph
    Settgast, Randolph R.
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (06) : 2881 - 2902