Structural transformations in single-wall carbon nanotubes under high pressure

被引:5
|
作者
Volkova Y.Y. [1 ]
Zelenovskiy P.S. [1 ]
Sokolovskiy D.N. [1 ]
Babushkin A.N. [1 ]
机构
[1] Institute of Natural Sciences, Ural Federal University
基金
俄罗斯基础研究基金会;
关键词
Carbon Nanotubes; Raman Spectrum; Single Wall Carbon Nanotubes; Diamond Anvil Cell; Radial Breathing Mode;
D O I
10.3103/S1062873814040327
中图分类号
学科分类号
摘要
Single-wall carbon nanotubes (SWNTs) under high pressure exhibit high structural stability and a series of structural transitions up to 35 GPa. As theoretically predicted, the irreversible transformation of SWNTs in the pressure range of 10-30 GPa can be attributed to the polymerization of nanotubes. The electrical conductivity of SWNTs is studied at high pressures up to 35 GPa using a diamond anvil cell (DAC) with electrically conductive anvils of the "rounded cone-plane" type made of synthetic carbonado-type diamonds. SWNTs are studied before and after the application of high pressure using the Raman confocal microscopy technique. Analysis of Raman spectra and pressure dependences of the SWNT resistance shows that the observed structural changes in SWNTs are reversible and no polymerization or collapse are observed. © 2014 Allerton Press, Inc.
引用
收藏
页码:285 / 287
页数:2
相关论文
共 50 条
  • [21] UNDULOID-LIKE EQUILIBRIUM SHAPES OF SINGLE-WALL CARBON NANOTUBES UNDER PRESSURE
    Vassilev, Vassil M.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2013, : 244 - 252
  • [22] Resistance vs. pressure of single-wall carbon nanotubes
    Bozhko, A.D.
    Sklovsky, D.E.
    Nalimova, V.A.
    Rinzler, A.G.
    Smalley, R.E.
    Fischer, J.E.
    Applied Physics A: Materials Science and Processing, 1998, 67 (01): : 75 - 77
  • [23] Resistance vs. pressure of single-wall carbon nanotubes
    A.D. Bozhko
    D.E. Sklovsky
    V.A. Nalimova
    A.G. Rinzler
    R.E. Smalley
    J.E. Fischer
    Applied Physics A, 1998, 67 : 75 - 77
  • [24] Pressure effects on surfactant solubilized single-wall carbon nanotubes
    Freire, P. T. C.
    Lemos, V.
    Lima, J. A., Jr.
    Saraiva, G. D.
    Pizani, P. S.
    Nascimento, R. O.
    Ricardo, N. M. P. S.
    Mendes, J.
    Souza, A. G.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (01): : 105 - 109
  • [25] Low pressure CVD growth of single-wall carbon nanotubes
    Shiokawa, T. (shiokawa@riken.jp), IEEE Electron Device Society; Japan Society of Applied Physics (IEEE Computer Society):
  • [26] Resistance vs. pressure of single-wall carbon nanotubes
    Bozhko, AD
    Sklovsky, DE
    Nalimova, VA
    Rinzler, AG
    Smalley, RE
    Fischer, JE
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (01): : 75 - 77
  • [27] Stability of single-wall carbon nanotubes under hydrothermal conditions
    Swamy, SS
    Calderon-Moreno, JM
    Yoshimura, M
    JOURNAL OF MATERIALS RESEARCH, 2002, 17 (04) : 734 - 737
  • [28] Stability of single-wall carbon nanotubes under hydrothermal conditions
    S. Srikanta Swamy
    Jose Maria Calderon-Moreno
    Masahiro Yoshimura
    Journal of Materials Research, 2002, 17 : 734 - 737
  • [29] Nanoplasticity of single-wall carbon nanotubes under uniaxial compression
    Srivastava, D
    Menon, M
    Cho, KJ
    PHYSICAL REVIEW LETTERS, 1999, 83 (15) : 2973 - 2976
  • [30] High pressure Raman study of carotene-encapsulating single-wall carbon nanotubes
    Arvanitidis, J.
    Christofilos, D.
    Souliou, S. M.
    Yanagi, K.
    Kataura, H.
    Kourouklis, G. A.
    Ves, S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (03): : 496 - 499