Characterization of Shift-Invariant Spaces on a Class of Nilpotent Lie Groups with Applications

被引:0
|
作者
Bradley Currey
Azita Mayeli
Vignon Oussa
机构
[1] Saint Louis University,Department of Mathematics and Computer Science
[2] City University of New York,Department of Mathematics and Computer Science
[3] Queensborough,Department of Mathematics
[4] Bridgewater State University,undefined
关键词
Nilpotent Lie groups; Shift-invariant subspaces; Frame and Reisz bases; 43; 46; 41;
D O I
暂无
中图分类号
学科分类号
摘要
Given a simply connected nilpotent Lie group having unitary irreducible representations that are square-integrable modulo the center, we use operator-valued periodization to give a range-function type characterization of shift-invariant spaces of function on the group. We then give characterizations of frame and Riesz families for shift-invariant spaces.
引用
收藏
页码:384 / 400
页数:16
相关论文
共 50 条
  • [41] Sampling and reconstruction in shift-invariant spaces on Rd
    Selvan, A. Antony
    Radha, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1683 - 1706
  • [42] Local reconstruction for sampling in shift-invariant spaces
    Qiyu Sun
    Advances in Computational Mathematics, 2010, 32 : 335 - 352
  • [43] Perturbation of frame sequences in shift-invariant spaces
    O. Christensen
    H. O. Kim
    R. Y. Kim
    J. K. Lim
    The Journal of Geometric Analysis, 2005, 15 : 181 - 192
  • [44] Shift-invariant spaces and linear operator equations
    Rong-Qing Jia
    Israel Journal of Mathematics, 1998, 103 : 259 - 288
  • [45] An analysis method for sampling in shift-invariant spaces
    Ericsson, S
    Grip, N
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (03) : 301 - 319
  • [46] Dilates of shift-invariant spaces on local fields
    Behera, Biswaranjan
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (3-4): : 261 - 284
  • [47] Sampling with Derivatives in Periodic Shift-Invariant Spaces
    Selvan, A. Antony
    Ghosh, Riya
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (13) : 1591 - 1615
  • [48] Nonuniform sampling and reconstruction in shift-invariant spaces
    Aldroubi, A
    Gröchenig, K
    SIAM REVIEW, 2001, 43 (04) : 585 - 620
  • [49] Sharp Sampling Theorems in Shift-invariant Spaces
    Groechenig, Karlheinz
    Romero, Jose Luis
    Stoeckler, Joachim
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 22 - 25
  • [50] Affine frame decompositions and shift-invariant spaces
    Chui, CK
    Sun, QY
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (01) : 74 - 107