CoS2@C nanospheres encapsulated in N-doped graphene oxide as high-performance anode for sodium-ion battery

被引:0
|
作者
Zhenxiao Lu
Jiawei Li
机构
[1] Nanyang Normal University,School of Chemical and Pharmaceutical Engineering
来源
Ionics | 2024年 / 30卷
关键词
Sodium-ion batteries; Hybrid structures; High-rate performance; Anode; 0D/2D;
D O I
暂无
中图分类号
学科分类号
摘要
Metal sulfides (MSs) exhibit great prospects as high-performance electrodes for sodium-ion batteries (SIBs), because of the excellent redox reversibility and relatively high theoretical capacity of the conversion-type electrochemical reaction. However, they suffer from intrinsic poor electrical conductivity and tremendous volume expansion during the Na+ insertion process, which would lead to sluggish reaction kinetic and severe capacity damping. Generally, designing hybrid structures with a secure framework, which could withstand the tension brought by the volume change, is an effective way to promote cycling stability. Besides, the carbonaceous material is considered to be an important additive, which can effectively elevate the electron/ion conductivity and realize the high-rate performance of the anode. Herein, a comprehensive 0-dimensional/2-dimensional (0D/2D) structure of carbon-coated CoS2 nanospheres encapsulated in reduced graphene oxide (denoted as CoS2@C/RG) is designed as anode material for SIBs. In the notable 0D/2D CoS2@C/RG structure, the nanoscale CoS2@C particles and RG nanosheets provide a high superficial area for Na+ insertion and shortened Na+ diffusion pathway. Furthermore, benefiting from the high conductivity and structural flexibility, the introduced RG supplies fast electron transportation channel and guarantees structural stability of the anode, which brings in improved reaction kinetic and structural stability. Consequently, the CoS2@C/RG electrode delivers a high specific capacity of 716.3 mAh/g at 0.2 A/g after 100 cycles, excellent rate performance, and stable cyclicity of 514.9 mAh/g at 5 A/g after 600 cycles. This work broadens the scope of rationally constructing comprehensive structures and may shed new light on MSs-based multidimensional anode material for SIBs.
引用
收藏
页码:2119 / 2126
页数:7
相关论文
共 50 条
  • [31] N-Doped Carbon Nanofibers with Interweaved Nanochannels for High-Performance Sodium-Ion Storage
    Zhao, Wenxiang
    Hu, Xiang
    Ci, Suqin
    Chen, Junxiang
    Wang, Genxiang
    Xu, Qiuhua
    Wen, Zhenhai
    SMALL, 2019, 15 (46)
  • [32] Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode
    Ye, Jianqi
    Zhao, Hanqing
    Song, Wei
    Wang, Na
    Kang, Mengmeng
    Li, Zhong
    JOURNAL OF POWER SOURCES, 2019, 412 : 606 - 614
  • [33] Co3O4/nitrogen-doped graphene promise high-performance sodium-ion battery anode
    Hu, Mao-Yuan
    Tang, Hu-Ling
    Li, Da-Sun
    Li, Rui
    Jiao, Wei
    Fang, Xin-Hua
    Chen, Jian
    Su, Wei
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 947
  • [34] A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries
    Cao, Tengfei
    Lv, Wei
    Zhang, Si-Wei
    Zhang, Jun
    Lin, Qiaowei
    Chen, Xiangrong
    He, Yanbing
    Kang, Fei-Yu
    Yang, Quan-Hong
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (65) : 16586 - 16592
  • [35] Rational design of mangosteen-like bismuth nanospheres coated by N-doped carbon shell as superb composite anode for high-performance sodium-ion batteries
    Chen, Xuanli
    Xu, Yanqiu
    Tang, Jian
    Li, Yin
    Hu, Junxian
    Zhang, Keyu
    Zhang, Shaoze
    Yao, Yaochun
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [36] Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries
    Zang, Rui
    Li, Pengxin
    Guo, Xin
    Man, Zengming
    Zhang, Songtao
    Wang, Chengyin
    Wang, Guoxiu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14051 - 14059
  • [37] Graphene layer reinforcing mesoporous molybdenum disulfide foam as high-performance anode for sodium-ion battery
    Deng, Jiao
    Zeng, Cheng
    Ma, Chao
    von Bulow, Jon Fold
    Zhang, Lei
    Deng, Dehui
    Tian, Zhongqun
    Bao, Xinhe
    MATERIALS TODAY ENERGY, 2018, 8 : 151 - 156
  • [38] Boron and phosphorous co-doped porous carbon as high-performance anode for sodium-ion battery
    Ahmad, Nazir
    Khan, Majid
    Zheng, Xiangjun
    Sun, Zhihui
    Yan, Jin
    Wei, Chaohui
    Shen, Liwei
    Batool, Nadia
    Yang, Ruizhi
    SOLID STATE IONICS, 2020, 356
  • [39] N-doped TiO2 nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery
    Li, Yueming
    Wang, Zhiguang
    Lv, Xiao-Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (37) : 15473 - 15479
  • [40] N-doped hollow porous carbon microspheres with high rate performance as anode for sodium-ion batteries
    Wang, Xin
    Zhu, Fuliang
    Xiao, Mingjun
    Liu, Shizhe
    Liu, Xingzhong
    Meng, Yanshuang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (10) : 7913 - 7922