Let p be a prime and let G be a finite p-group. In a recent paper (Woodcock, J Pure Appl Algebra 210:193–199, 2007) we introduced a commutative graded ℤ-algebra RG. This classifies, for each commutative ring R with identity element, the G-invariant commutative R-algebra multiplications on the group algebra R[G] which are cocycles (in fact coboundaries) with respect to the standard “direct sum” multiplication and have the same identity element. We show here that, up to inseparable isogeny, the “graded-commutative” mod p cohomology ring \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^\ast(G, \mathbb{F}_p)$\end{document} of G has the same spectrum as the ring of invariants of RG mod p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(R_G \otimes_{\mathbb{Z}} \mathbb{F}_p)^G$\end{document} where the action of G is induced by conjugation.