Reciprocal Polynomials and p-Group Cohomology

被引:0
|
作者
Chris Woodcock
机构
[1] University of Kent,Institute of Mathematics, Statistics and Actuarial Science
来源
关键词
Invariant theory; Group rings; -Group; Cohomology; 13A50; 20C05; 20J06;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime and let G be a finite p-group. In a recent paper (Woodcock, J Pure Appl Algebra 210:193–199, 2007) we introduced a commutative graded ℤ-algebra RG. This classifies, for each commutative ring R with identity element, the G-invariant commutative R-algebra multiplications on the group algebra R[G] which are cocycles (in fact coboundaries) with respect to the standard “direct sum” multiplication and have the same identity element. We show here that, up to inseparable isogeny, the “graded-commutative” mod p cohomology ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^\ast(G, \mathbb{F}_p)$\end{document} of G has the same spectrum as the ring of invariants of RG mod p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(R_G \otimes_{\mathbb{Z}} \mathbb{F}_p)^G$\end{document} where the action of G is induced by conjugation.
引用
收藏
页码:597 / 604
页数:7
相关论文
共 50 条