共 50 条
Reciprocal Polynomials and p-Group Cohomology
被引:0
|作者:
Chris Woodcock
机构:
[1] University of Kent,Institute of Mathematics, Statistics and Actuarial Science
来源:
关键词:
Invariant theory;
Group rings;
-Group;
Cohomology;
13A50;
20C05;
20J06;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let p be a prime and let G be a finite p-group. In a recent paper (Woodcock, J Pure Appl Algebra 210:193–199, 2007) we introduced a commutative graded ℤ-algebra RG. This classifies, for each commutative ring R with identity element, the G-invariant commutative R-algebra multiplications on the group algebra R[G] which are cocycles (in fact coboundaries) with respect to the standard “direct sum” multiplication and have the same identity element. We show here that, up to inseparable isogeny, the “graded-commutative” mod p cohomology ring \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^\ast(G, \mathbb{F}_p)$\end{document} of G has the same spectrum as the ring of invariants of RG mod p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(R_G \otimes_{\mathbb{Z}} \mathbb{F}_p)^G$\end{document} where the action of G is induced by conjugation.
引用
收藏
页码:597 / 604
页数:7
相关论文