Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls

被引:0
|
作者
Kaitlin J. Palla
Paula M. Pijut
机构
[1] Purdue University,Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center (HTIRC)
[2] Oak Ridge National Laboratory,USDA Forest Service, Northern Research Station
[3] HTIRC,undefined
关键词
Genetic transformation; Organogenesis; Regeneration; White ash;
D O I
暂无
中图分类号
学科分类号
摘要
An Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for white ash (Fraxinus americana) using hypocotyls as the initial explants. Hypocotyls isolated from mature embryos germinated on Murashige and Skoog (MS) medium supplemented with 22.2 µM 6-benzyladenine (BA) and 0.5 µM thidiazuron (TDZ) were transformed using A. tumefaciens strain EHA105 harboring the binary vector pq35GR containing a fusion gene between neomycin phosphotransferase (nptII) and gusA, as well as an enhanced green fluorescent protein (EGFP). Explants were transformed in a bacterial suspension with 100 µM acetosyringone using 90 s sonication and 10 min vacuum infiltration. Putative transformed shoots representing seven independent lines were selectively regenerated on MS medium with 22.2 µM BA, 0.5 µM TDZ, 50 mg L−1 adenine sulfate, 10 % coconut water, 30 mg L−1 kanamycin, and 500 mg L−1 timentin. Timentin at 500 mg L−1 was optimal for controlling excess bacterial growth, and transformed shoots were selected using 30 mg L−1 kanamycin. The presence of GUS (β-glucuronidase), nptII, and EGFP in transformed plants was confirmed by polymerase chain reaction (PCR). Reverse transcription-PCR and fluorescence microscopy confirmed the expression of EGFP. Transgenic microshoots were rooted (80 %) on woody plant medium supplemented with 4.9 µM indole-3-butyric acid, 2.9 µM indole-3-acetic acid, and 500 mg L−1 timentin, and subsequently acclimatized to the culture room. This transformation protocol provides the framework for future genetic modification of white ash to produce plant material resistant to the emerald ash borer.
引用
收藏
页码:631 / 641
页数:10
相关论文
共 50 条
  • [31] Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation
    David White
    Weidong Chen
    Current Genetics, 2006, 49 : 272 - 280
  • [32] Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation
    White, D
    Chen, WD
    CURRENT GENETICS, 2006, 49 (04) : 272 - 280
  • [33] Agrobacterium-mediated in planta genetic transformation of sugarcane setts
    Mayavan, Subramanian
    Subramanyam, Kondeti
    Jaganath, Balusamy
    Sathish, Dorairaj
    Manickavasagam, Markandan
    Ganapathi, Andy
    PLANT CELL REPORTS, 2015, 34 (10) : 1835 - 1848
  • [34] Plant Proteins Involved in Agrobacterium-Mediated Genetic Transformation
    Gelvin, Stanton B.
    ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 48, 2010, 48 : 45 - 68
  • [35] Establishment of Agrobacterium-mediated genetic transformation system in Dahlia
    Otani, Yuko
    Chin, Dong Poh
    Mii, Masahiro
    PLANT BIOTECHNOLOGY, 2013, 30 (02) : 135 - 139
  • [36] Agrobacterium-mediated in planta genetic transformation of sugarcane setts
    Subramanian Mayavan
    Kondeti Subramanyam
    Balusamy Jaganath
    Dorairaj Sathish
    Markandan Manickavasagam
    Andy Ganapathi
    Plant Cell Reports, 2015, 34 : 1835 - 1848
  • [37] Agrobacterium-mediated genetic transformation of plants: The role of host
    Karami, O.
    Esna-Ashari, M.
    Kurdistani, G. Karimi
    Aghavaisi, B.
    BIOLOGIA PLANTARUM, 2009, 53 (02) : 201 - 212
  • [38] Thirty Years of Agrobacterium-Mediated Genetic Transformation of Populus
    Chen Y.
    Hu C.
    Zhuge Q.
    Hu J.
    Yin T.
    Linye Kexue/Scientia Silvae Sinicae, 2022, 58 (12): : 114 - 129
  • [39] Establishment of Agrobacterium-mediated Genetic Transformation of Miscanthus sinensis
    Dhungana, Prabin
    Reichert, Nancy A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2019, 55 : S55 - S56
  • [40] Regeneration and Agrobacterium-mediated genetic transformation in Dianthus chinensis
    Zhang, Xiaoni
    Wu, Quanshu
    Lin, Shengnan
    Zhang, Zhen
    Wang, Zehao
    Wang, Qijian
    Yan, Xiuli
    Bendahmane, Mohammed
    Bao, Manzhu
    Fu, Xiaopeng
    SCIENTIA HORTICULTURAE, 2021, 287