Numerical verification of the orders of accuracy of truncated asymptotic expansion solutions to the van der Pol equation

被引:0
|
作者
Sudi Mungkasi
机构
[1] Sanata Dharma University,Department of Mathematics, Faculty of Science and Technology
来源
关键词
Asymptotic expansion; Formal expansion; Order of accuracy; Perturbation method; Van der Pol equation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a numerical method to verify the orders of accuracy of truncated asymptotic expansion solutions to the van der Pol equation. Our proposed method is simpler than an existing method (Deeba and Xie in J Comput Anal Appl 3(2): 165–171, 2001). Our proposed method does not need any technique of a least-squares fit of error data, whereas the existing one does. Numerical simulations confirm that our proposed method works effectively.
引用
收藏
页码:216 / 223
页数:7
相关论文
共 50 条
  • [21] A Simple Numerical Method For Van der Pol-Duffing Oscillator Equation
    Zhang, Chengli
    Zeng, Yun
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING, 2014, 113 : 476 - 480
  • [22] About Analytical Approximate Solutions of the Van der Pol Equation in the Complex Domain
    Orlov, Victor
    Chichurin, Alexander
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [23] Periodic solutions of a generalized Van der Pol-Mathieu differential equation
    Kalas, J.
    Kaderabek, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 192 - 202
  • [24] Orthogonal trajectories and analytical solutions of the van der Pol equation without forcing
    Dixon, JM
    Tuszynski, JA
    Sept, D
    PHYSICS LETTERS A, 1998, 239 (1-2) : 65 - 71
  • [25] PERIODIC-SOLUTIONS OF A COMBINED VAN DER POL DUFFING DIFFERENTIAL EQUATION
    HORVATH, AJT
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1975, 17 (11-1) : 677 - 680
  • [26] Orthogonal trajectories and analytical solutions of the van der Pol equation without forcing
    Dixon, J.M.
    Tuszyńskib, J.A.
    Sept, D.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (1-2): : 65 - 71
  • [27] On transition processes for the Van der Pol equation
    Ter-Krikorov A.M.
    Computational Mathematics and Mathematical Physics, 2007, 47 (6) : 924 - 935
  • [28] A note on the forced Van der Pol equation
    Matzinger, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 281 - 286
  • [29] Ultradiscrete analogue of the van der Pol equation
    Isojima, Shin
    Suzuki, Seiichiro
    NONLINEARITY, 2022, 35 (03) : 1468 - 1484
  • [30] APPROXIMATE SYMMETRIES OF A VAN DER POL EQUATION
    BAIKOV, VA
    DIFFERENTIAL EQUATIONS, 1994, 30 (10) : 1684 - 1686