A multi-agent reinforcement learning approach to robot soccer

被引:0
|
作者
Yong Duan
Bao Xia Cui
Xin He Xu
机构
[1] Shenyang University of Technology,
[2] Northeastern University,undefined
来源
关键词
Multi-agent system; Reinforcement learning; Probabilistic neural network; Robot soccer;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a multi-agent reinforcement learning method based on action prediction of other agent is proposed. In a multi-agent system, action selection of the learning agent is unavoidably impacted by other agents’ actions. Therefore, joint-state and joint-action are involved in the multi-agent reinforcement learning system. A novel agent action prediction method based on the probabilistic neural network (PNN) is proposed. PNN is used to predict the actions of other agents. Furthermore, the sharing policy mechanism is used to exchange the learning policy of multiple agents, the aim of which is to speed up the learning. Finally, the application of presented method to robot soccer is studied. Through learning, robot players can master the mapping policy from the state information to the action space. Moreover, multiple robots coordination and cooperation are well realized.
引用
收藏
页码:193 / 211
页数:18
相关论文
共 50 条
  • [31] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [33] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [34] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    [J]. Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [35] Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit
    Yu, Chao
    Dong, Yinzhao
    Li, Yangning
    Chen, Yatong
    [J]. JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 499 - 504
  • [36] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [37] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [38] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [39] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    [J]. FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [40] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    [J]. 2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635