Nickel–cobalt oxide nanosheets asymmetric supercapacitor for energy storage applications

被引:0
|
作者
S. Alrousan
B. Albiss
B. Aljawrneh
A. Alshanableh
Amani Al-Othman
H. Megdadi
机构
[1] Jordan University of Science & Technology,Department of Physics
[2] Jordan University of Science & Technology,Nanotechnology Institute
[3] Al-Zaytoonah University of Jordan,Department of Physics
[4] American University of Sharjah,Department of Chemical Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Supercapacitors are a promising candidate in applications that necessitate high electrochemical stability and storage energy. In this study, NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} nanosheets were prepared hydrothermally on an ITO substrate and investigated to be utilized as supercapacitor electrodes. The morphology of NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} nanosheets was examined by scanning electron microscopy (SEM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SEM}$$\end{document}) and atomic force microscopy (AFM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{AFM}$$\end{document}). The SEM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SEM}$$\end{document} results showed a 3D-flower-like nanostructure with interconnected nanosheets which was confirmed by the AFM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{AFM}$$\end{document} results. However, X-ray fluorescence (XRF) results showed that the as-prepared sample has stoichiometry of Nickle(1):Cobalt(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Nickle }\,(1):\mathrm{ Cobalt }\,(2)$$\end{document}. The electrochemical measurements of the as-prepared NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} supercapacitor electrode such as cyclic voltammetry (CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document}) and galvanostatic charge/discharge (GCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GCD}$$\end{document}) studies were done in a two-electrode system with 1.0 M KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} and 1.0 M H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document}. CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document} curves showed quasi-rectangular shape and high electrochemical stability in KOH and H2SO4 electrolyte solutions. In addition, the integral areas of CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document} curves for both electrolytes are almost identical, indicating efficient charge transfer and ion transport at the electrode/electrolyte interface. Electrochemical impedance spectroscopy (EIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{EIS}$$\end{document}) curves of KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} and H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte revealed a significant difference. This difference indicates that, the charge transfer in H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte is faster than charge transfer in KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document}, resulting in a linear behavior of the EIS curve. A fabricated hybrid asymmetric supercapacitor (SC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SC}$$\end{document}) composed of NiCo2O4/ITO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}/\mathrm{ITO}$$\end{document} anode and graphite/ITO cathode delivered a specific capacity of around 235F/g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$235\,\mathrm{ F}/{\mathrm{g}}$$\end{document} in KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} solution and 723F/g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$723\,\mathrm{ F}/{\mathrm{g}}$$\end{document} in H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte at 10 mV/s scan rate. The superior electrochemical performances could be attributed to the large surface area that facilitates charge transfer at the electrode/electrolyte interface.
引用
收藏
相关论文
共 50 条
  • [31] A direct route to activated two-dimensional cobalt oxide nanosheets for electrochemical energy storage, catalytic and environmental applications
    Munuera, J. M.
    Paredes, J. I.
    Villar-Rodil, S.
    Garcia-Dali, S.
    Castro-Muniz, A.
    Martinez-Alonso, A.
    Tascon, J. M. D.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 539 : 263 - 276
  • [32] Ternary mixed nickel cobalt iron oxide nanorods as a high-performance asymmetric supercapacitor electrode
    Faid, Alaa Y.
    Ismail, Hadeer
    [J]. MATERIALS TODAY ENERGY, 2019, 13 : 285 - 292
  • [33] Biomass derived porous carbon incorporated nickel oxide hybrid electrode as supercapacitor electrodes for energy storage device applications
    A. Ganesh
    T. Sivakumar
    P. Venkateswari
    G. Sankar
    R. Venkatesh
    [J]. Journal of Materials Science: Materials in Electronics, 2023, 34
  • [34] Lanthanum Oxide Nickel Hydroxide Composite Triangle Nanosheets for Energy Density Asymmetric Supercapacitors
    Duan, Huiyu
    Shi, Mei
    Zhang, Mengfei
    Feng, Geyu
    Liu, Suli
    Chen, Changyun
    [J]. FRONTIERS IN CHEMISTRY, 2021, 9
  • [35] Hydrothermally Synthesized Cobalt Oxide Nanowires on Nickel Foam for High-Performance Energy-Storage Applications
    Ali, Awais
    Ammar, Muhammad
    Hameed, Iqra
    Ali, Muddassir
    Tayyab, Muhammad
    Mujahid, Rana
    Ali, Imran
    Zia-ul-Haq, Muhammad
    Ashraf, Muhammad
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [36] Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications
    Chavan, U. S.
    Lokhande, P. E.
    Bhosale, Suraj
    [J]. MATERIALS TECHNOLOGY, 2022, 37 (08) : 728 - 734
  • [37] Rapid fabrication of binder free nickel cobalt oxide electrodes with dendritic nanostructure for electrochemical energy storage applications
    Subedi, Binod
    Khatoon, Najma
    Gaire, Madhu
    Majed, Ahmad
    He, Jibao
    Zhang, Xiaodong
    Chrisey, Douglas B.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 695
  • [38] High-Performance Nickel Cobalt Hydroxide Nanosheets/Graphene/Ni foam Composite Electrode for Supercapacitor Applications
    Zhang, Ming
    Wang, Yixuan
    Guo, Xinli
    Li, Rui
    Peng, Zhengbin
    Zhang, Weijie
    Zheng, Yanmei
    Xie, Hang
    Zhang, Yao
    Zhao, Yuhong
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 897
  • [39] Mixed Nickel-Cobalt-Molybdenum Metal Oxide Nanosheet Arrays for Hybrid Supercapacitor Applications
    She, Yin
    Tang, Bin
    Li, Dongling
    Tang, Xiaosheng
    Qiu, Jing
    Shang, Zhengguo
    Hu, Wei
    [J]. COATINGS, 2018, 8 (10):
  • [40] Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage
    Dong, Bitao
    Li, Mingyan
    Xiao, Chunhui
    Ding, Dawei
    Gao, Guoxin
    Ding, Shujiang
    [J]. NANOTECHNOLOGY, 2017, 28 (05)