Nickel–cobalt oxide nanosheets asymmetric supercapacitor for energy storage applications

被引:0
|
作者
S. Alrousan
B. Albiss
B. Aljawrneh
A. Alshanableh
Amani Al-Othman
H. Megdadi
机构
[1] Jordan University of Science & Technology,Department of Physics
[2] Jordan University of Science & Technology,Nanotechnology Institute
[3] Al-Zaytoonah University of Jordan,Department of Physics
[4] American University of Sharjah,Department of Chemical Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Supercapacitors are a promising candidate in applications that necessitate high electrochemical stability and storage energy. In this study, NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} nanosheets were prepared hydrothermally on an ITO substrate and investigated to be utilized as supercapacitor electrodes. The morphology of NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} nanosheets was examined by scanning electron microscopy (SEM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SEM}$$\end{document}) and atomic force microscopy (AFM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{AFM}$$\end{document}). The SEM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SEM}$$\end{document} results showed a 3D-flower-like nanostructure with interconnected nanosheets which was confirmed by the AFM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{AFM}$$\end{document} results. However, X-ray fluorescence (XRF) results showed that the as-prepared sample has stoichiometry of Nickle(1):Cobalt(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Nickle }\,(1):\mathrm{ Cobalt }\,(2)$$\end{document}. The electrochemical measurements of the as-prepared NiCo2O4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}$$\end{document} supercapacitor electrode such as cyclic voltammetry (CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document}) and galvanostatic charge/discharge (GCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GCD}$$\end{document}) studies were done in a two-electrode system with 1.0 M KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} and 1.0 M H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document}. CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document} curves showed quasi-rectangular shape and high electrochemical stability in KOH and H2SO4 electrolyte solutions. In addition, the integral areas of CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CV}$$\end{document} curves for both electrolytes are almost identical, indicating efficient charge transfer and ion transport at the electrode/electrolyte interface. Electrochemical impedance spectroscopy (EIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{EIS}$$\end{document}) curves of KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} and H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte revealed a significant difference. This difference indicates that, the charge transfer in H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte is faster than charge transfer in KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document}, resulting in a linear behavior of the EIS curve. A fabricated hybrid asymmetric supercapacitor (SC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SC}$$\end{document}) composed of NiCo2O4/ITO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{NiCo}}_{2}{\mathrm{O}}_{4}/\mathrm{ITO}$$\end{document} anode and graphite/ITO cathode delivered a specific capacity of around 235F/g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$235\,\mathrm{ F}/{\mathrm{g}}$$\end{document} in KOH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{KOH}$$\end{document} solution and 723F/g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$723\,\mathrm{ F}/{\mathrm{g}}$$\end{document} in H2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_{2}{\mathrm{SO}}_{4}$$\end{document} electrolyte at 10 mV/s scan rate. The superior electrochemical performances could be attributed to the large surface area that facilitates charge transfer at the electrode/electrolyte interface.
引用
收藏
相关论文
共 50 条
  • [1] Nickel-cobalt oxide nanosheets asymmetric supercapacitor for energy storage applications
    Alrousan, S.
    Albiss, B.
    Aljawrneh, B.
    Alshanableh, A.
    Al-Othman, Amani
    Megdadi, H.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (07)
  • [2] Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications
    Karthikeyan, A.
    Mariappan, R.
    Krishnamoorthy, E.
    Bakkiyaraj, R.
    [J]. IONICS, 2024, 30 (04) : 2069 - 2082
  • [3] Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications
    A. Karthikeyan
    R. Mariappan
    E. Krishnamoorthy
    R. Bakkiyaraj
    [J]. Ionics, 2024, 30 : 2069 - 2082
  • [4] Studying the substrate effects on energy storage abilities of flexible battery supercapacitor hybrids based on nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide
    Hong, Wei-Lun
    Lin, Lu-Yin
    [J]. ELECTROCHIMICA ACTA, 2019, 308 : 83 - 90
  • [5] High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor
    Wang, Xu
    Yan, Chaoyi
    Sumboja, Afriyanti
    Lee, Pool See
    [J]. NANO ENERGY, 2014, 3 : 119 - 126
  • [6] Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
    Lu Liu
    Anru Liu
    Yuhan Xu
    Haoming Yu
    Fangqi Yang
    Jun Wang
    Zheling Zeng
    Shuguang Deng
    [J]. Journal of Materials Research, 2020, 35 : 1205 - 1213
  • [7] Synergistic Effect of Nickel and Cobalt in Nanowire Array for High Energy Storage with Rapid Charge Transfer in Asymmetric Supercapacitor
    Pandey, Ravi Ranjan
    Kashyap, Yashvant
    Andola, Anshu
    Nakanishi, Hideyuki
    Pandey, Rakesh K.
    [J]. CHEMISTRYSELECT, 2023, 8 (29):
  • [8] Agglomerated nickel-cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
    Liu, Lu
    Liu, Anru
    Xu, Yuhan
    Yu, Haoming
    Yang, Fangqi
    Wang, Jun
    Zeng, Zheling
    Deng, Shuguang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2020, 35 (09) : 1205 - 1213
  • [9] Advanced asymmetric supercapacitor based on molybdenum trioxide decorated nickel cobalt oxide nanosheets and three-dimensional α-FeOOH/rGO
    Lin, Fengjian
    Yuan, Ming
    Chen, Yuan
    Huang, Yunpeng
    Lian, Jiabiao
    Qiu, Jingxia
    Xu, Hui
    Li, Huaming
    Yuan, Shouqi
    Zhao, Yan
    Cao, Shunsheng
    [J]. ELECTROCHIMICA ACTA, 2019, 320
  • [10] A new energy conversion and storage device of cobalt oxide nanosheets
    Kalasina, Saran
    Phattharasupakun, Nutthaphon
    Sawangphruk, Montree
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (01) : 36 - 40