Deformation of integral sections in the Mordell–Weil group

被引:0
|
作者
Cheng Gong
Yi Gu
机构
[1] Soochow University,School of Mathematical Sciences
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Mordell–Weil group; Integral sections; Deformation space; 14J27;
D O I
暂无
中图分类号
学科分类号
摘要
Using deformation theory, we answer two questions of Shioda concerning the infinitesimal structure of the moduli space of integral sections in the Mordell–Weil group.
引用
收藏
页码:373 / 379
页数:6
相关论文
共 50 条
  • [1] Deformation of integral sections in the Mordell-Weil group
    Gong, Cheng
    Gu, Yi
    ARCHIV DER MATHEMATIK, 2023, 120 (04) : 373 - 379
  • [2] Integral points and Mordell-Weil lattices
    Shioda, T
    PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, 2002, : 185 - 193
  • [3] Mordell-Weil torsion in the mirror of multi-sections
    Paul-Konstantin Oehlmann
    Jonas Reuter
    Thorsten Schimannek
    Journal of High Energy Physics, 2016
  • [4] Mordell-Weil torsion in the mirror of multi-sections
    Oehlmann, Paul-Konstantin
    Reuter, Jonas
    Schimannek, Thorsten
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [5] Why is it difficult to compute the Mordell-Weil group ?
    Hindry, Marc
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 197 - 219
  • [7] Symplectic group lattices as Mordell-Weil sublattices
    Dummigan, N
    JOURNAL OF NUMBER THEORY, 1996, 61 (02) : 365 - 387
  • [8] Mordell–Weil lattices in characteristic 2 II: The Leech lattice as a Mordell–Weil latticeII: The Leech lattice as a Mordell–Weil lattice
    Noam D. Elkies
    Inventiones mathematicae, 1997, 128 : 1 - 8
  • [9] ON PSEUDO-NULLITY OF THE FINE MORDELL-WEIL GROUP
    Lim, Meng fai
    Qin, Chao
    Wang, Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
  • [10] Generic point and Mordell-Weil Group rank jump
    Colliot-Thelene, Jean-Louis
    ACTA ARITHMETICA, 2020, 196 (01) : 93 - 108