Deformation of integral sections in the Mordell-Weil group

被引:0
|
作者
Gong, Cheng [1 ]
Gu, Yi [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Mordell-Weil group; Integral sections; Deformation space; GROBNER BASIS; SINGULARITIES; LATTICES;
D O I
10.1007/s00013-023-01828-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using deformation theory, we answer two questions of Shioda concerning the infinitesimal structure of the moduli space of integral sections in the Mordell-Weil group.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 50 条
  • [1] Deformation of integral sections in the Mordell–Weil group
    Cheng Gong
    Yi Gu
    Archiv der Mathematik, 2023, 120 : 373 - 379
  • [2] Integral points and Mordell-Weil lattices
    Shioda, T
    PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, 2002, : 185 - 193
  • [3] Mordell-Weil torsion in the mirror of multi-sections
    Paul-Konstantin Oehlmann
    Jonas Reuter
    Thorsten Schimannek
    Journal of High Energy Physics, 2016
  • [4] Why is it difficult to compute the Mordell-Weil group ?
    Hindry, Marc
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 197 - 219
  • [5] Mordell-Weil torsion in the mirror of multi-sections
    Oehlmann, Paul-Konstantin
    Reuter, Jonas
    Schimannek, Thorsten
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [7] Symplectic group lattices as Mordell-Weil sublattices
    Dummigan, N
    JOURNAL OF NUMBER THEORY, 1996, 61 (02) : 365 - 387
  • [8] Visibility of Mordell-Weil groups
    Stein, William A.
    DOCUMENTA MATHEMATICA, 2007, 12 : 587 - 606
  • [9] ON PSEUDO-NULLITY OF THE FINE MORDELL-WEIL GROUP
    Lim, Meng fai
    Qin, Chao
    Wang, Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
  • [10] THE BEHAVIOR OF THE MORDELL-WEIL GROUP OF ELLIPTIC-CURVES
    BRUMER, A
    MCGUINNESS, O
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) : 375 - 382