Spectroscopic diagnostics of chemical processes: applications of tunable optical parametric oscillators

被引:0
|
作者
G.W. Baxter
M.A. Payne
B.D.W. Austin
C.A. Halloway
J.G. Haub
Y. He
A.P. Milce
J.F. Nibler
B.J. Orr
机构
[1] Department of Chemistry and Centre for Lasers & Applications,
[2] Macquarie University,undefined
[3] Sydney,undefined
[4] NSW 2109,undefined
[5] Australia (Fax: +61-2/9850-8313,undefined
[6] E-mail: brian.orr@mq.edu.au),undefined
[7] Macquarie University Visiting Research Fellow,undefined
[8] 1998; permanent address: Chemistry Department,undefined
[9] Oregon State University,undefined
[10] Corvallis,undefined
[11] Oregon 97331-9800,undefined
[12] USA (Fax: +1-541/737-2062,undefined
[13] E-mail: niblerj@chem.orst.edu),undefined
来源
Applied Physics B | 2000年 / 71卷
关键词
PACS: 33.20.-t; 42.62.Fi; 42.65.Yj;
D O I
暂无
中图分类号
学科分类号
摘要
Optical parametric oscillator (OPO) and amplifier (OPA) devices are useful for spectroscopic sensing of chemical processes in laboratory, industrial, and environmental settings. This is particularly true of nanosecond-pulsed, continuously tunable OPO/OPA systems, for which we survey a variety of instrumental strategies, together with actual spectroscopic measurements. The relative merits of OPO wavelength control by intracavity gratings and by injection seeding are considered. A major innovation comprises an OPO with a ring cavity based on periodically poled lithium niobate (PPLN) and injection-seeded by a single-mode tunable diode laser (TDL). Active cavity control by an ‘intensity dip’ method yields an optical bandwidth ≤0.005 cm-1 (150 MHz), which compares favourably with the performance of advanced grating-tuned OPO/OPA systems. A novel adaptation of this TDL-seeded PPLN OPO employs a compact, inexpensive multimode pump laser, with which it is still possible to obtain continuously tunable single-mode signal output. Cavity ringdown (CRD) spectroscopy also figures prominently, with infrared (IR) CRD spectra from both grating-scanned and TDL-seeded OPOs reported. Finally, a tunable ultraviolet (UV) source, combining a TDL-seeded passive-cavity OPO and a sum-frequency generation stage, is developed for measurements of time-resolved IR-UV double resonance spectra of acetylene and UV laser-induced fluorescence spectra of nitric oxide.
引用
收藏
页码:651 / 663
页数:12
相关论文
共 50 条
  • [31] Nanosecond optical parametric oscillators
    Debuisschert, T
    [J]. QUANTUM AND SEMICLASSICAL OPTICS, 1997, 9 (02): : 209 - 219
  • [32] Mirrorless optical parametric oscillators
    Ding, YJJ
    Khurgin, JB
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1996, 5 (02) : 223 - 246
  • [33] PROGRESS IN OPTICAL PARAMETRIC OSCILLATORS
    FAN, YX
    BYER, RL
    [J]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 461 : 27 - 32
  • [34] Microchip optical parametric oscillators
    Zayhowski, JJ
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (07) : 925 - 927
  • [35] Fiber optical parametric oscillators
    Zlobina E.A.
    Kablukov S.I.
    [J]. Zlobina, E. A. (zlobinakaterina@gmail.com), 1600, Allerton Press Incorporation (49): : 363 - 382
  • [36] Monolithic optical parametric oscillators
    Breunig, Ingo
    Beckmann, Tobias
    Buse, Karsten
    [J]. LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XIV, 2012, 8236
  • [37] Femtosecond optical parametric oscillators
    Hache, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2000, 1 (05): : 585 - 591
  • [38] Optical diagnostics in oral cancer: An update on Raman spectroscopic applications
    Sahu, Aditi
    Krishna, C. Murali
    [J]. JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2017, 13 (06) : 908 - 915
  • [39] Optimizing parametric oscillators with tunable boundary conditions
    Plat, Hare
    Bucher, Izhak
    [J]. JOURNAL OF SOUND AND VIBRATION, 2013, 332 (03) : 487 - 493
  • [40] NONLINEAR AND ACTIVE SPECTROSCOPY WITH TUNABLE PARAMETRIC OSCILLATORS
    AKHMANOV, SA
    OGLUZDIN, VE
    KHOLODNY.AI
    KOVRIGIN, AI
    KOROTEEV, NI
    DMITRIEV, VG
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1972, QE 8 (06) : 524 - &