Existence and exponential decay estimates for an N-dimensional nonlinear wave equation with a nonlocal boundary condition

被引:0
|
作者
Le Thi Phuong Ngoc
Nguyen Anh Triet
Nguyen Thanh Long
机构
[1] University of Khanh Hoa,Department of Mathematics
[2] University of Architecture of Ho Chi Minh City,Department of Mathematics and Computer Science
[3] University of Natural Science,undefined
[4] Vietnam National University Ho Chi Minh City,undefined
来源
关键词
Galerkin method; nonlinear wave equation; local existence; global existence; exponential decay; 35L05; 35L15; 35L70; 37B25;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the recent known results as regards the existence and exponential decay of solutions for wave equations, this paper is devoted to the study of an N-dimensional nonlinear wave equation with a nonlocal boundary condition. We first state two local existence theorems. Next, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions. The main tools are the Faedo-Galerkin method and the Lyapunov method.
引用
收藏
相关论文
共 50 条
  • [41] An inverse nonlinear diffusion equation with a nonlocal boundary condition
    Karamali, GR
    Shidfar, A
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 189 - 191
  • [42] Blowup time estimates for the heat equation with a nonlocal boundary condition
    Heqian Lu
    Bei Hu
    Zhengce Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [43] Blowup time estimates for the heat equation with a nonlocal boundary condition
    Lu, Heqian
    Hu, Bei
    Zhang, Zhengce
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [44] Existence of Solutions for the Laplacian Equation with Exponential Neumann Boundary Condition
    Zhang, Tao
    Zhou, Changliang
    Zhou, Chunqin
    FRONTIERS OF MATHEMATICS, 2023, 18 (04): : 797 - 816
  • [45] Existence of Solutions for the Laplacian Equation with Exponential Neumann Boundary Condition
    Tao Zhang
    Changliang Zhou
    Chunqin Zhou
    Frontiers of Mathematics, 2023, 18 : 797 - 816
  • [46] Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term*
    Ngoc, Le Thi Phuong
    Nhan, Nguyen Huu
    Nam, Bui Duc
    Long, Nguyen Thanh
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (02) : 225 - 247
  • [47] PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION
    Li, Yuhuan
    Mi, Yongsheng
    Mu, Chunlai
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 748 - 758
  • [48] PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION
    李玉环
    米永生
    穆春来
    Acta Mathematica Scientia, 2014, 34 (03) : 748 - 758
  • [49] Existence, Blow-up and Exponential Decay Estimates for the Nonlinear Kirchhoff Carrier Wave Equation in an Annular with Robin-Dirichlet Conditions
    Ngoc, Le Thi Phuong
    Son, Le Huu Ky
    Long, Nguyen Thanh
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 859 - 888
  • [50] EXISTENCE AND EXPONENTIAL DECAY OF A LOGARITHMIC WAVE EQUATION WITH DISTRIBUTED DELAY
    Yuksekkaya, Hazal
    Piskin, Erhan
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 1057 - 1071