Charge transport mechanism in networks of armchair graphene nanoribbons

被引:0
|
作者
Nils Richter
Zongping Chen
Alexander Tries
Thorsten Prechtl
Akimitsu Narita
Klaus Müllen
Kamal Asadi
Mischa Bonn
Mathias Kläui
机构
[1] Johannes Gutenberg-Universität Mainz,
[2] Institut für Physik,undefined
[3] Staudingerweg 7,undefined
[4] Graduate School of Excellence Materials Science in Mainz,undefined
[5] Staudingerweg 9,undefined
[6] Max Planck Institut für Polymerforschung,undefined
[7] Ackermannweg 10,undefined
[8] School of Materials Science and Engineering,undefined
[9] Zhejiang University,undefined
[10] 38 Zheda Road,undefined
[11] Johannes Gutenberg-Universität Mainz,undefined
[12] Institut für physikalische Chemie,undefined
[13] Duesbergweg 10–14,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature that enables novel graphene-based electronics. Despite great progress, reliable and reproducible fabrication of single-ribbon field-effect transistors (FETs) is still a challenge, impeding the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on networks of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with large conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs to electrodes. Modeling the charge transport in the networks reveals that transport is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical GNR length. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism is a key step forward for functionalization of GNRs.
引用
收藏
相关论文
共 50 条
  • [41] Single-parameter quantum charge and spin pumping in armchair graphene nanoribbons
    Zhou, Y.
    Wu, M. W.
    PHYSICAL REVIEW B, 2012, 86 (08)
  • [42] Trapped Modes in Armchair Graphene Nanoribbons
    Kozlov V.A.
    Nazarov S.A.
    Orlof A.
    Journal of Mathematical Sciences, 2021, 252 (5) : 624 - 645
  • [43] Exciton effects in armchair graphene nanoribbons
    Jia, Y. L.
    Geng, X.
    Sun, H.
    Luo, Y.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (04): : 451 - 455
  • [44] Electronic properties of armchair graphene nanoribbons
    Rozhkov, A. V.
    Savel'ev, S.
    Nori, Franco
    PHYSICAL REVIEW B, 2009, 79 (12):
  • [45] Polaron Properties in Armchair Graphene Nanoribbons
    da Cunha, Wiliam F.
    Acioli, Paulo H.
    de Oliveira Neto, Pedro H.
    Gargano, Ricardo
    e Silva, Geraldo M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (27): : 4893 - 4900
  • [46] Lithium adsorption on armchair graphene nanoribbons
    Krepel, Dana
    Hod, Oded
    SURFACE SCIENCE, 2011, 605 (17-18) : 1633 - 1642
  • [47] Exciton effects in armchair graphene nanoribbons
    Y. L. Jia
    X. Geng
    H. Sun
    Y. Luo
    The European Physical Journal B, 2011, 83 : 451 - 455
  • [48] Electronic Properties of Armchair Graphene Nanoribbons
    Bhojani, Amit K.
    Soni, Himadri R.
    Jha, Prafulla K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [49] Electronic transport for impurity-doped armchair-edge graphene nanoribbons
    Zhou, B. L.
    Zhou, B. H.
    Chen, X. W.
    Zhou, G. H.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (04):
  • [50] Electrical and transport properties of twisted armchair graphene nanoribbons tailored by uniaxial strain
    Mohammadi, Amin
    Nazirfakhr, Maryam
    Shahhoseini, Ali
    2015 23RD IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 1374 - 1377