Charge transport mechanism in networks of armchair graphene nanoribbons

被引:0
|
作者
Nils Richter
Zongping Chen
Alexander Tries
Thorsten Prechtl
Akimitsu Narita
Klaus Müllen
Kamal Asadi
Mischa Bonn
Mathias Kläui
机构
[1] Johannes Gutenberg-Universität Mainz,
[2] Institut für Physik,undefined
[3] Staudingerweg 7,undefined
[4] Graduate School of Excellence Materials Science in Mainz,undefined
[5] Staudingerweg 9,undefined
[6] Max Planck Institut für Polymerforschung,undefined
[7] Ackermannweg 10,undefined
[8] School of Materials Science and Engineering,undefined
[9] Zhejiang University,undefined
[10] 38 Zheda Road,undefined
[11] Johannes Gutenberg-Universität Mainz,undefined
[12] Institut für physikalische Chemie,undefined
[13] Duesbergweg 10–14,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature that enables novel graphene-based electronics. Despite great progress, reliable and reproducible fabrication of single-ribbon field-effect transistors (FETs) is still a challenge, impeding the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on networks of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with large conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs to electrodes. Modeling the charge transport in the networks reveals that transport is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical GNR length. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism is a key step forward for functionalization of GNRs.
引用
收藏
相关论文
共 50 条
  • [1] Charge transport mechanism in networks of armchair graphene nanoribbons
    Richter, Nils
    Chen, Zongping
    Tries, Alexander
    Prechtl, Thorsten
    Narita, Akimitsu
    Muellen, Klaus
    Asadi, Kamal
    Bonn, Mischa
    Klaeui, Mathias
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Transport Mechanism of B/P Codoped Armchair Graphene Nanoribbons
    Liu, Jiaxu
    Shao, Qingyi
    Rui, Chenkang
    Shao, Cheng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (05) : 2120 - 2125
  • [3] Carrier Transport in Armchair and Zigzag Graphene Nanoribbons
    Jafari, Mohammad Reza
    Bahrami, Bahram
    Abolghasemi, Tahereh
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (01) : 573 - 578
  • [4] Carrier Transport in Armchair and Zigzag Graphene Nanoribbons
    Mohammad Reza Jafari
    Bahram Bahrami
    Tahereh Abolghasemi
    Journal of Electronic Materials, 2017, 46 : 573 - 578
  • [5] Transport in armchair graphene nanoribbons and in ordinary waveguides
    Zubair, M.
    Bahrami, M.
    Vasilopoulos, P.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (16)
  • [6] Charge Transport Mechanism in Chevron-Graphene Nanoribbons
    Pereira Junior, Marcelo Lopes
    da Cunha, Wiliam Ferreira
    de Sousa Junior, Rafael Timoteo
    Giozza, William Ferreira
    Magela e Silva, Geraldo
    Ribeiro Junior, Luiz Antonio
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (41): : 22392 - 22398
  • [7] Dynamics of charge quasiparticles generation in armchair graphene nanoribbons
    de Oliveira Neto, Pedro Henrique
    Van Voorhis, Troy
    CARBON, 2018, 132 : 352 - 358
  • [8] Electronic structure and transport properties of armchair graphene nanoribbons
    Ouyang Fang-Ping
    Xu Hui
    Li Ming-Jun
    Xiao Jin
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (02) : 328 - 332
  • [9] Transport in armchair graphene nanoribbons modulated by magnetic barriers
    Myoung, Nojoon
    Ihm, G.
    Lee, S. J.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (10): : 2808 - 2811
  • [10] Transport properties of two finite armchair graphene nanoribbons
    Luis Rosales
    Jhon W González
    Nanoscale Research Letters, 8