Distributive laws in residuated binars

被引:0
|
作者
Wesley Fussner
Peter Jipsen
机构
[1] University of Denver,Department of Mathematics
[2] Mathematics Chapman University,undefined
来源
Algebra universalis | 2019年 / 80卷
关键词
Residuated lattices; Residuated binars; Residuation; Subvariety lattices; 06F05; 03G10; 08B15;
D O I
暂无
中图分类号
学科分类号
摘要
In residuated binars there are six non-obvious distributivity identities of ·,/,\\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot ,/,\backslash $$\end{document} over ∧,∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge , \vee $$\end{document}. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these.
引用
收藏
相关论文
共 50 条