In residuated binars there are six non-obvious distributivity identities of ·,/,\\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cdot ,/,\backslash $$\end{document} over ∧,∨\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\wedge , \vee $$\end{document}. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these.