On the mapping of jet spaces

被引:4
|
作者
Tryhuk V. [1 ]
Chrastinová V. [1 ]
机构
[1] Brno University of Technology, Faculty of Civil Engineering, Department of Mathematics, 602 00 Brno
关键词
generalized contact transformations; Infinite-order jet spaces; LieBäcklund theorem; morphisms of jets;
D O I
10.1142/S140292511000091X
中图分类号
学科分类号
摘要
Any locally invertible morphism of a finite-order jet space is either a prolonged point transformation or a prolonged Lie's contact transformation (the LieBäcklund theorem). We recall this classical result with a simple proof and moreover determine explicit formulae even for all (not necessarily invertible) morphisms of finite-order jet spaces. Examples of generalized (higher-order) contact transformations of jets that destroy all finite-order jet subspaces are stated with comments. © 2010 The Author(s).
引用
收藏
页码:293 / 310
页数:17
相关论文
共 50 条
  • [21] MAPPING SPACES AND LIFTINGS FOR OPERATOR-SPACES
    EFFROS, EG
    RUAN, ZJ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 : 171 - 197
  • [22] DENSITY PROPERTIES OF MAPPING SPACES FOR OPERATOR SPACES
    董浙
    姜海益
    ActaMathematicaScientia, 2011, 31 (02) : 399 - 407
  • [23] Jet spaces in modern Hamiltonian biomechanics
    Ivancevic, Tijana T.
    Jovanovic, Bojan
    Stankovic, Ratko
    Markovic, Sasa
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (06): : 873 - 882
  • [24] Geometry of jet spaces and integrable systems
    Krasil'shchik, Joseph
    Verbovetsky, Alexander
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (09) : 1633 - 1674
  • [25] Differential forms on arithmetic jet spaces
    James Borger
    Alexandru Buium
    Selecta Mathematica, 2011, 17 : 301 - 335
  • [26] Jet spaces as nonrigid Carnot groups
    Warhurst, B
    JOURNAL OF LIE THEORY, 2005, 15 (01) : 341 - 356
  • [27] Jet spaces over Carnot groups
    Golo, Sebastiano Nicolussi
    Warhurst, Benjamin
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (06) : 2289 - 2330
  • [28] Differential forms on arithmetic jet spaces
    Borger, James
    Buium, Alexandru
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (02): : 301 - 335
  • [29] The calculus of multivectors on noncommutative jet spaces
    Kiselev, Arthemy V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 130 - 167
  • [30] Slanted vector fields for jet spaces
    Lionel Darondeau
    Mathematische Zeitschrift, 2016, 282 : 547 - 575