Finite-dimensional approximation of the inverse frame operator

被引:0
|
作者
Ole Christensen
机构
[1] Technical University of Denmark,Department of Mathematics
关键词
42C15; 41A35; frames; approximation of the inverse frame operator; Weil-Heisenberg frame; wavelet frame;
D O I
暂无
中图分类号
学科分类号
摘要
A frame in a Hilbert space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} allows every element in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} to be written as a linear combination of the frame elements, with coefficients called frame coefficients. Calculations of those coefficients and many other situations where frames occur, requires knowledge of the inverse frame operator. But usually it is hard to invert the frame operator if the underlying Hilbert space is infinite dimensional. In the present paper we introduce a method for approximation of the inverse frame operator using finite subsets of the frame. In particular this allows to approximate the frame coefficients (even inl2) using finite-dimensional linear algebra. We show that the general method simplifies in the important cases of Weil-Heisenberg frames and wavelet frames.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条
  • [41] Approximation of the Inverse Frame Operator and Stability of Hilbert–Schmidt Frames
    Anirudha Poria
    Mediterranean Journal of Mathematics, 2017, 14
  • [42] Frames containing a Riesz basis and approximation of the inverse frame operator
    Christensen, O
    Lindner, A
    RECENT PROGRESS IN MULTIVARIATE APPROXIMATION, 2001, 137 : 89 - 100
  • [43] Finite-Dimensional Gaussian Approximation with Linear Inequality Constraints
    Lopez-Lopera, Andres F.
    Bachoc, Francois
    Durrande, Nicolas
    Roustant, Olivier
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1224 - 1255
  • [44] Finite-dimensional approximation for a class of elliptic obstacle problems
    Huang, YS
    Zhou, YY
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) : 1745 - 1754
  • [45] Finite-dimensional approximation properties for uniform Roe algebras
    Sako, Hiroki
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (02): : 623 - 644
  • [46] A Finite-Dimensional Approximation Method in Optimal Control Theory
    A. V. Arutyunov
    R. B. Vinter
    Differential Equations, 2003, 39 : 1519 - 1528
  • [47] Twisted K-Theory and Finite-Dimensional Approximation
    Gomi, Kiyonori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (03) : 863 - 889
  • [48] Twisted K-Theory and Finite-Dimensional Approximation
    Kiyonori Gomi
    Communications in Mathematical Physics, 2010, 294 : 863 - 889
  • [49] A finite-dimensional approximation method in optimal control theory
    Arutyunov, AV
    Vinter, RB
    DIFFERENTIAL EQUATIONS, 2003, 39 (11) : 1519 - 1528
  • [50] Bi-Lipschitz approximation by finite-dimensional imbeddings
    Karin Usadi Katz
    Mikhail G. Katz
    Geometriae Dedicata, 2011, 150 : 131 - 136