Finite-dimensional approximation of the inverse frame operator

被引:0
|
作者
Ole Christensen
机构
[1] Technical University of Denmark,Department of Mathematics
关键词
42C15; 41A35; frames; approximation of the inverse frame operator; Weil-Heisenberg frame; wavelet frame;
D O I
暂无
中图分类号
学科分类号
摘要
A frame in a Hilbert space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} allows every element in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} to be written as a linear combination of the frame elements, with coefficients called frame coefficients. Calculations of those coefficients and many other situations where frames occur, requires knowledge of the inverse frame operator. But usually it is hard to invert the frame operator if the underlying Hilbert space is infinite dimensional. In the present paper we introduce a method for approximation of the inverse frame operator using finite subsets of the frame. In particular this allows to approximate the frame coefficients (even inl2) using finite-dimensional linear algebra. We show that the general method simplifies in the important cases of Weil-Heisenberg frames and wavelet frames.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条