Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions

被引:0
|
作者
Ghassan A. Al-Juaifri
Akil J. Harfash
机构
[1] University of Basrah,Department of Mathematics, College of Sciences
[2] University of Kufa,Department of Mathematics,Faculty of Computer Science and Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Existence; Uniqueness; Faedo-Galerkin; Robin boundary conditions; Fitzhugh-Nagumo; Weak solution; Strong solution; 35K57; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the system of reaction-diffusion equations of the Fitzhugh-Nagumo (FHN) type on open bounded convex domains D⊂Rd(d≤3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D} \subset \mathbb {R}^{d} (d \le 3)$$\end{document} with Robin boundary conditions. The Classical Faedo-Galerkin approach Lions (Quelques méthodes de résolution des problemes aux limites non linéaires 1969) and compactness arguments are utilised to show the existence, uniqueness, and continuous dependence on initial data of weak and strong solutions. Moreover, we introduce a complete case study for the application of this approach to the Fitzhugh-Nagumo system.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条