Evaluation of deep learning model for human activity recognition

被引:0
|
作者
Owais Bhat
Dawood A Khan
机构
[1] University of Kashmir,Department of Computer Sciences, North Campus
来源
Evolving Systems | 2022年 / 13卷
关键词
Deep learning; Sensors; Activity recognition; Classification; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Recognizing a person’s physical activity with certainty makes an important aspect of intelligent computing. Modern smart devices are equipped with powerful sensors that are suitable for sensor-based human activity recognition (AR) task. Traditional approaches to human activity recognition has made significant progress but most of those methods rely upon manual feature extraction. The design and selection of relevant features is the most challenging task in sensor-based human AR problem. Using manually extracted features for this task hinders the generalization of performance and these handcrafted features are also incapable of handling similar and complex activities with certainty. In this paper, we propose a deep learning based method for human activity recognition problem. The method uses convolutional neural networks to automatically extract features from raw sensor data and classify six basic human activities. Furthermore, transfer learning is used to reduce the computational cost involved in training the model from scratch for a new user. The model uses the labelled information from supervised learning, to mutually enhance the feature extraction and classification. Experiments carried on benchmark dataset verified the strong advantage of proposed method over the traditional human AR algorithms such as Random Forest (RF) and multiclass Support Vector Machine (SVM).
引用
收藏
页码:159 / 168
页数:9
相关论文
共 50 条
  • [41] Personalized Models in Human Activity Recognition using Deep Learning
    Amrani, Hamza
    Micucci, Daniela
    Napoletano, Paolo
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9682 - 9688
  • [42] Deep Learning Framework for Single and Dyadic Human Activity Recognition
    Singh, Tej
    Rustagi, Shivam
    Garg, Aakash
    Vishwakarma, Dinesh K.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 237 - 241
  • [43] A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition
    Kaseris, Michail
    Kostavelis, Ioannis
    Malassiotis, Sotiris
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (02): : 842 - 876
  • [44] A Classifier Approach using Deep Learning for Human Activity Recognition
    Rawat, Sarthak Singh
    Bisht, Abhishek
    Nijhawan, Rahul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 486 - 490
  • [46] The Future of Human Activity Recognition: Deep Learning or Feature Engineering?
    Ria Kanjilal
    Ismail Uysal
    Neural Processing Letters, 2021, 53 : 561 - 579
  • [47] A Novel Semisupervised Deep Learning Method for Human Activity Recognition
    Zhu, Qingchang
    Chen, Zhenghua
    Soh, Yeng Chai
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 3821 - 3830
  • [48] A Deep Learning Framework for Smartphone Based Human Activity Recognition
    Mallik, Manjarini
    Sarkar, Garga
    Chowdhury, Chandreyee
    MOBILE NETWORKS & APPLICATIONS, 2023, 29 (1): : 29 - 41
  • [49] A New Deep-Learning Method for Human Activity Recognition
    Vrskova, Roberta
    Kamencay, Patrik
    Hudec, Robert
    Sykora, Peter
    SENSORS, 2023, 23 (05)
  • [50] Robust Human Activity Recognition based on Deep Metric Learning
    Abdu-Aguye, Mubarak G.
    Gomaa, Walid
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 656 - 663