Turing instability and pattern formation of neural networks with reaction–diffusion terms

被引:1
|
作者
Hongyong Zhao
Xuanxuan Huang
Xuebing Zhang
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics, School of Sciences
来源
Nonlinear Dynamics | 2014年 / 76卷
关键词
Stability; Reaction–diffusion; Turing instability; Amplitude equations; Neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a model for a network of neurons with reaction–diffusion is investigated. By analyzing the linear stability of the system, Hopf bifurcation and Turing unstable conditions are obtained. Based on this, standard multiple-scale analysis is used for deriving the amplitude equations of the model for the excited modes in the Turing bifurcation. Moreover, the stability of different patterns is also determined. The obtained results enrich the dynamics of neurons’ network system.
引用
收藏
页码:115 / 124
页数:9
相关论文
共 50 条
  • [41] PATTERN-FORMATION DYNAMICS RESULTING FROM A REACTION DIFFUSION INSTABILITY
    AGUADO, M
    SAGUES, F
    PHYSICS LETTERS A, 1990, 143 (6-7) : 283 - 287
  • [42] TURING INSTABILITY AND PATTERN FORMATIONS FOR REACTION-DIFFUSION SYSTEMS ON 2D BOUNDED DOMAIN
    Jiang, Weihua
    Cao, X. U. N.
    Wang, Chuncheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 1163 - 1178
  • [44] Pattern formation in a reaction-diffusion system with wave instability.
    Dolnik, M
    Zhabotinsky, AM
    Rovinsky, A
    Epstein, IR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U363 - U363
  • [45] Turing pattern formation in the Brusselator system with nonlinear diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    Sciacca, V.
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [46] Differential flow induced transition of Hopf instability to Turing instability and pattern formation
    Riaz, SS
    Kar, S
    Ray, DS
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 203 (3-4) : 224 - 232
  • [47] Network topology and double delays in turing instability and pattern formation
    Zheng, Q. Q.
    Li, X.
    Shen, J. W.
    Pandey, V
    Guan, L. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [48] Turing instability of anomalous reaction-anomalous diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2008, 19 : 329 - 349
  • [49] Instability of turing patterns in reaction-diffusion-ODE systems
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (03) : 583 - 618
  • [50] Instability of turing patterns in reaction-diffusion-ODE systems
    Anna Marciniak-Czochra
    Grzegorz Karch
    Kanako Suzuki
    Journal of Mathematical Biology, 2017, 74 : 583 - 618