Covariance analysis for deep-space satellites with radar and optical tracking data

被引:0
|
作者
James G. Miller
机构
[1] The MITRE Corporation,
关键词
Radar; Covariance Analysis; Radar Track; Astrodynamic Specialist; Solar Phase Angle;
D O I
暂无
中图分类号
学科分类号
摘要
Covariance analysis for the special perturbations orbit determination problem for deepspace satellites is considered to determine the relative merit of radar and optical tracking data. Deep-space radars provide very accurate range measurements, but less accurate angle measurements. Optical sensors provide very accurate angle measurements, but make no range measurements since they are passive systems. The relationship of the size of the spatial part of the covariance to the relative track density of radar and optical tracks in the orbit determination fit interval is illustrated for satellites in semi-synchronous circular orbits. Similar results apply to highly eccentric semi-synchronous and geosynchronous orbits.
引用
收藏
页码:237 / 243
页数:6
相关论文
共 50 条
  • [21] Compact deep-space optical communications transceiver
    Roberts, W. Thomas
    Charles, Jeffrey R.
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXI, 2009, 7199
  • [22] Performance analysis of hybrid MPAPM technique for deep-space optical communications
    Idris, Sadiq
    Selmy, Hossam
    Lopes, Waslon Terllizzie A.
    IET COMMUNICATIONS, 2021, 15 (13) : 1700 - 1709
  • [23] Optical array receiver for deep-space communications
    Vilnrotter, V
    Lau, CW
    Srinivasan, M
    Mukai, R
    Andrews, K
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XVI, 2004, 5338 : 163 - 174
  • [24] Turning Palomar into a deep-space optical receiver
    Chen, CC
    Biswas, A
    Roberts, WT
    Britcliffe, MJ
    2005 Digest of the LEOS Summer Topical Meetings, 2005, : 11 - 12
  • [25] Infrared Earth tracking for deep-space optical communications: Feasibility study based on laboratory emulator
    Chen, Yijiang
    Charles, Jeffrey
    Hemmati, Harnid
    Biswas, Abhijit
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIX AND ATMOSPHERIC PROPAGATION OF ELECTROMAGNETIC WAVES, 2007, 6457
  • [26] Adaptive optics for daytime deep-space optical communications
    Gladysz, Szymon
    Zepp, Andreas
    Bellossi, Raphael
    Segel, Max
    McDonald, Douglas
    Stein, Karin
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS XI, 2022, 12237
  • [27] Design of a Ground Terminal for Deep-Space Optical Communications
    Reyes Garcia-Talavera, Marcos
    Sanchez-Capuchino, Jorge
    Tenegi, Fabio
    Alonso, Angel
    Vega, Nauzet
    Martin, Yolanda
    Rivera, Carlos
    Stumpf, Max C.
    2017 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS (ICSOS), 2017, : 38 - 45
  • [28] Using Optical Communications Links for Deep-Space Navigation
    Martin-Mur, Tomas J.
    Zhai, Chengxing
    Jacobs, Christopher
    Turyshev, Slava G.
    Shao, Michael
    Peng, Michael
    McCandless, Sarah Elizabeth
    Karimi, Reza R.
    2017 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS (ICSOS), 2017, : 176 - 182
  • [29] Optimizations of a hardware decoder for deep-space optical communications
    Cheng, Michael K.
    Nakashima, Michael A.
    Moision, Bruce E.
    Harrikins, Jon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (02) : 644 - 658
  • [30] Deep-Space Optical Navigation Exploiting Multiple Beacons
    V. Franzese
    F. Topputo
    The Journal of the Astronautical Sciences, 2022, 69 : 368 - 384