Inhibition of Crm1–p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation

被引:0
|
作者
Masayuki Kanai
Kazuhiko Hanashiro
Song-Hee Kim
Shuji Hanai
A. Hamid Boulares
Masanao Miwa
Kenji Fukasawa
机构
[1] H. Lee Moffitt Cancer Center and Research Institute,Department of Cell Biology
[2] University of Cincinnati College of Medicine,Department of Pharmacology
[3] Cincinnati,undefined
[4] Ohio 45267,undefined
[5] USA.,undefined
[6] National Institute of Advanced Industrial Science and Technology,undefined
[7] Louisiana State University Health Sciences Center,undefined
[8] Faculty of Bioscience,undefined
[9] Nagahama Institute of Bio-Science and Technology,undefined
来源
Nature Cell Biology | 2007年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Poly(ADP-ribose) polymerase 1 (PARP-1) and p53 are two key proteins in the DNA-damage response. Although PARP-1 is known to poly(ADP-ribosyl)ate p53, the role of this modification remains elusive. Here, we identify the major poly(ADP-ribosyl)ated sites of p53 by PARP-1 and find that PARP-1-mediated poly(ADP-ribosyl)ation blocks the interaction between p53 and the nuclear export receptor Crm1, resulting in nuclear accumulation of p53. These findings molecularly link PARP-1 and p53 in the DNA-damage response, providing the mechanism for how p53 accumulates in the nucleus in response to DNA damage. PARP-1 becomes super-activated by binding to damaged DNA, which in turn poly(ADP-ribosyl)ates p53. The nuclear export machinery is unable to target poly(ADP-ribosyl)ated p53, promoting accumulation of p53 in the nucleus where p53 exerts its transactivational function.
引用
收藏
页码:1175 / 1183
页数:8
相关论文
共 50 条
  • [31] A Chimeric p53 Evades Mutant p53 Transdominant Inhibition in Cancer Cells
    Okal, Abood
    Mossalam, Mohanad
    Matissek, Karina J.
    Dixon, Andrew S.
    Moos, Philip J.
    Lim, Carol S.
    MOLECULAR PHARMACEUTICS, 2013, 10 (10) : 3922 - 3933
  • [32] Interaction of p53 with the Δ133p53α and Δ160p53α isoforms regulates p53 conformation and transcriptional activity
    Tomas, Fanny
    Roux, Pierre
    Gire, Veronique
    CELL DEATH & DISEASE, 2024, 15 (11):
  • [33] p53 nuclear accumulation and CRM1 down-regulation in lung lesions of a bitransgenic mouse lung tumor model
    Chen, Lixia
    Moore, Joseph
    Shao, Changxia
    Cobos, Everardo
    Miller, Mark
    Gao, Weimin
    CANCER RESEARCH, 2009, 69
  • [34] Novel p53 degradation system via nuclear export signaling
    Hazawa, Masaharu
    Wong, Richard
    CANCER SCIENCE, 2023, 114 : 948 - 948
  • [35] C-terminal ubiquitination of p53 contributes to nuclear export
    Lohrum, MAE
    Woods, DB
    Ludwig, RL
    Bálint, E
    Vousden, KH
    MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (24) : 8521 - 8532
  • [36] The nuclear exporter, Crm1, is regulated by NFY and Sp1 in cancer cells and repressed by p53 in response to DNA damage
    van der Watt, Pauline J.
    Leaner, Virna D.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2011, 1809 (07): : 316 - 326
  • [37] Nitric oxide induces phosphorylation of p53 and impairs nuclear export
    Nicole Schneiderhan
    Andreja Budde
    Yanping Zhang
    Bernhard Brüne
    Oncogene, 2003, 22 : 2857 - 2868
  • [38] Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors
    Natalia Issaeva
    Przemyslaw Bozko
    Martin Enge
    Marina Protopopova
    Lisette G G C Verhoef
    Maria Masucci
    Aladdin Pramanik
    Galina Selivanova
    Nature Medicine, 2004, 10 : 1321 - 1328
  • [39] Nitric oxide induces phosphorylation of p53 and impairs nuclear export
    Schneiderhan, N
    Budde, A
    Zhang, YP
    Brüne, B
    ONCOGENE, 2003, 22 (19) : 2857 - 2868
  • [40] Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy
    Mukherjee, Riddhita
    Tetri, Laura H.
    Li, Sin-Jin
    Fajardo, Giovanni
    Ostberg, Nicolai P.
    Tsegay, Kaleb B.
    Gera, Kanika
    Cornell, Timothy T.
    Bernstein, Daniel
    Mochly-Rosen, Daria
    Haileselassie, Bereketeab
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2023, 177 : 28 - 37