Inhibition of Crm1–p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation

被引:0
|
作者
Masayuki Kanai
Kazuhiko Hanashiro
Song-Hee Kim
Shuji Hanai
A. Hamid Boulares
Masanao Miwa
Kenji Fukasawa
机构
[1] H. Lee Moffitt Cancer Center and Research Institute,Department of Cell Biology
[2] University of Cincinnati College of Medicine,Department of Pharmacology
[3] Cincinnati,undefined
[4] Ohio 45267,undefined
[5] USA.,undefined
[6] National Institute of Advanced Industrial Science and Technology,undefined
[7] Louisiana State University Health Sciences Center,undefined
[8] Faculty of Bioscience,undefined
[9] Nagahama Institute of Bio-Science and Technology,undefined
来源
Nature Cell Biology | 2007年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Poly(ADP-ribose) polymerase 1 (PARP-1) and p53 are two key proteins in the DNA-damage response. Although PARP-1 is known to poly(ADP-ribosyl)ate p53, the role of this modification remains elusive. Here, we identify the major poly(ADP-ribosyl)ated sites of p53 by PARP-1 and find that PARP-1-mediated poly(ADP-ribosyl)ation blocks the interaction between p53 and the nuclear export receptor Crm1, resulting in nuclear accumulation of p53. These findings molecularly link PARP-1 and p53 in the DNA-damage response, providing the mechanism for how p53 accumulates in the nucleus in response to DNA damage. PARP-1 becomes super-activated by binding to damaged DNA, which in turn poly(ADP-ribosyl)ates p53. The nuclear export machinery is unable to target poly(ADP-ribosyl)ated p53, promoting accumulation of p53 in the nucleus where p53 exerts its transactivational function.
引用
收藏
页码:1175 / 1183
页数:8
相关论文
共 50 条
  • [1] Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation
    Kanai, Masayuki
    Hanashiro, Kazuhiko
    Kim, Song-Hee
    Hanai, Shuji
    Boulares, A. Hamid
    Miwa, Masanao
    Fukasawa, Kenji
    NATURE CELL BIOLOGY, 2007, 9 (10) : 1175 - 1183
  • [2] Covalent poly(ADP-ribosyl)ation of p53
    Mendoza-Alvarez, H
    Frey, M
    Zentgraf, H
    Alvarez-Gonzalez, R
    FASEB JOURNAL, 2001, 15 (05): : A888 - A888
  • [3] Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells
    Simbulan-Rosenthal, CM
    Rosenthal, DS
    Luo, RB
    Smulson, ME
    CANCER RESEARCH, 1999, 59 (09) : 2190 - 2194
  • [4] Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis
    Kim, Hyun-Lim
    Ra, Hana
    Kim, Ki-Ryeong
    Lee, Jeong-Min
    Im, Hana
    Kim, Yang-Hee
    MOLECULES AND CELLS, 2015, 38 (04) : 312 - 317
  • [5] CONTRIBUTION OF POLY(ADP-RIBOSYL)ATION OF P53 IN TPEN-INDUCED NEURONAL APOPTOSIS
    Kim, H. L.
    Kim, Y. H.
    JOURNAL OF NEUROCHEMISTRY, 2009, 110 : 189 - 189
  • [6] Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1
    M-H Lee
    H Na
    E-J Kim
    H-W Lee
    M-O Lee
    Oncogene, 2012, 31 : 5099 - 5107
  • [7] Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1
    Lee, M-H
    Na, H.
    Kim, E-J
    Lee, H-W
    Lee, M-O
    ONCOGENE, 2012, 31 (49) : 5099 - 5107
  • [8] Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation
    Mendoza-Alvarez, H
    Alvarez-Gonzalez, R
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) : 36425 - 36430
  • [9] Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence
    Simbulan-Rosenthal, CM
    Rosenthal, DS
    Luo, RB
    Samara, R
    Jung, M
    Dritschilo, A
    Spoonde, A
    Smulson, ME
    NEOPLASIA, 2001, 3 (03): : 179 - 188
  • [10] The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1
    Fischbach, Arthur
    Krueger, Annika
    Hampp, Stephanie
    Assmann, Greta
    Rank, Lisa
    Hufnagel, Matthias
    Stoeckl, Martin T.
    Fischer, Jan M. F.
    Veith, Sebastian
    Rossatti, Pascal
    Ganz, Magdalena
    Ferrando-May, Elisa
    Hartwig, Andrea
    Hauser, Karin
    Wiesmueller, Lisa
    Buerkle, Alexander
    Mangerich, Aswin
    NUCLEIC ACIDS RESEARCH, 2018, 46 (02) : 804 - 822