In this paper,we are interested in the existence and uniqueness of positive solutions for integral boundary value problem with fractional q-derivative:
Dqαu(t)+f(t,u(t),u(t))+g(t,u(t))=0,0<t<1,u(0)=Dqu(0)=0,u(1)=μ∫01u(s)dqs,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $$\begin{aligned} &D_{q}^{\alpha}u(t)+f\bigl(t,u(t),u(t)\bigr)+g\bigl(t,u(t) \bigr)=0, \quad 0< t< 1, \\ & u(0)=D_{q}u(0)=0, \qquad u(1)=\mu \int_{0}^{1}u(s)\,d_{q}s, \end{aligned}$$ \end{document} where Dqα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$D_{q}^{\alpha}$\end{document} is the fractional q-derivative of Riemann–Liouville type, 0<q<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0< q<1$\end{document}, 2<α≤3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2<\alpha\leq3 $\end{document}, and μ is a parameter with 0<μ<[α]q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\mu<[\alpha]_{q}$\end{document}. By virtue of fixed point theorems for mixed monotone operators, we obtain some results on the existence and uniqueness of positive solutions.