Existence and uniqueness results to positive solutions of integral boundary value problem for fractional q-derivatives

被引:0
|
作者
Furi Guo
Shugui Kang
Fu Chen
机构
[1] Shanxi Datong University,School of Mathematics and Computer Science
关键词
Positive solution; Mixed monotone operator; Fractional ; -difference equation; Existence and uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,we are interested in the existence and uniqueness of positive solutions for integral boundary value problem with fractional q-derivative: Dqαu(t)+f(t,u(t),u(t))+g(t,u(t))=0,0<t<1,u(0)=Dqu(0)=0,u(1)=μ∫01u(s)dqs,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &D_{q}^{\alpha}u(t)+f\bigl(t,u(t),u(t)\bigr)+g\bigl(t,u(t) \bigr)=0, \quad 0< t< 1, \\ & u(0)=D_{q}u(0)=0, \qquad u(1)=\mu \int_{0}^{1}u(s)\,d_{q}s, \end{aligned}$$ \end{document} where Dqα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{q}^{\alpha}$\end{document} is the fractional q-derivative of Riemann–Liouville type, 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< q<1$\end{document}, 2<α≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\alpha\leq3 $\end{document}, and μ is a parameter with 0<μ<[α]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\mu<[\alpha]_{q}$\end{document}. By virtue of fixed point theorems for mixed monotone operators, we obtain some results on the existence and uniqueness of positive solutions.
引用
收藏
相关论文
共 50 条
  • [31] Existence and Uniqueness of Positive Solutions to a Class of Singular Integral Boundary Value Problems of Fractional Order
    Caballero, J.
    Harjani, J.
    Sadarangani, K.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [32] Existence and uniqueness results of some fractional boundary value problem
    Seddiki, Hanifa
    Mazouzi, Said
    [J]. JOURNAL OF APPLIED ANALYSIS, 2011, 17 (01) : 91 - 103
  • [33] Existence of positive solutions for a semipositone boundary value problem with sequential fractional derivatives
    Tudorache, Alexandru
    Luca, Rodica
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14451 - 14469
  • [34] Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval
    Hao, Xinan
    Sun, Hui
    Liu, Lishan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6984 - 6996
  • [35] Existence results of positive solutions to boundary value problem for fractional differential equation
    Zhang, Shuqin
    [J]. POSITIVITY, 2009, 13 (03) : 583 - 599
  • [36] Existence results of positive solutions to boundary value problem for fractional differential equation
    Shuqin Zhang
    [J]. Positivity, 2009, 13 : 583 - 599
  • [37] Existence and Uniqueness of Positive Solutions for a Singular Second-Order Integral Boundary Value Problem
    Caballero, Josefa
    Lopez, Belen
    Sadarangani, Kishin
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (01): : 51 - 65
  • [38] Existence and Uniqueness of Positive Solution for a Boundary Value Problem of Fractional Order
    Caballero, J.
    Harjani, J.
    Sadarangani, K.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [39] On existence and uniqueness of positive solutions to a class of fractional boundary value problems
    Caballero, J.
    Harjani, J.
    Sadarangani, K.
    [J]. BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [40] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM WITH DIRICHLET BOUNDARY CONDITION
    Graef, John R.
    Kong, Lingju
    Kong, Qingkai
    Wang, Min
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (55) : 1 - 11