Precision;
Neuromotor noise;
Stiffness;
Motor variability;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The neuromuscular system is inherently noisy and joint impedance may serve to filter this noise. In the present experiment, we investigated whether individuals modulate joint impedance to meet spatial accuracy demands. Twelve subjects were instructed to make rapid, time constrained, elbow extensions to three differently sized targets. Some trials (20 out of 140 for each target, randomly assigned) were perturbed mechanically at 75% of movement amplitude. Inertia, damping and stiffness were estimated from the torque and angle deviation signal using a forward simulation and optimization routine. Increases in endpoint accuracy were not always reflected in a decrease in trajectory variability. Only in the final quarter of the trajectory the variability decreased as target width decreased. Stiffness estimates increased significantly with accuracy constraints. Damping estimates only increased for perturbations that were initially directed against the movement direction. We concluded that joint impedance modulation is one of the strategies used by the neuromuscular system to generate accurate movements, at least during the final part of the movement.
机构:
Univ Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden
Umea Univ, Dept Surg & Perioperat Sci, Div Sports Med, Umea, Sweden
Alfta Res Fdn, Alfta, SwedenUniv Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden
Sandlund, Jonas
Roijezon, Ulrik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden
Umea Univ, Dept Community Med & Rehabil, Umea, Sweden
Alfta Res Fdn, Alfta, SwedenUniv Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden
Roijezon, Ulrik
Bjorklund, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden
Alfta Res Fdn, Alfta, SwedenUniv Gavle, Ctr Musculoskeletal Res, SE-90712 Umea, Sweden