Interior point techniques for optimal control of variational inequalities

被引:0
|
作者
A. Leôntiev
J. Herskovits
机构
[1] PEM COPPE/Federal University of Rio de Janeiro,
[2] Lavrentyev Institute of Hydrodynamics,undefined
来源
Structural optimization | 1997年 / 14卷
关键词
Civil Engineer; Control Problem; Variational Inequality; Test Problem; Minimization Problem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to a new application of an interior point algorithm to solve optimal control problems of variational inequalities. We propose a Lagrangian technique to obtain a necessary optimality system. After the discretization of the optimality system we prove its equivalence to Karush-Kuhn-Tucker conditions of a nonlinear regular minimization problem. This problem can be efficiently solved by using a modification of Herskovits' interior point algorithm for nonlinear optimization. We describe the numerical scheme for solving this problem and give some numerical examples of test problems in 1-D and 2-D.
引用
收藏
页码:100 / 107
页数:7
相关论文
共 50 条
  • [1] Interior point techniques for optimal control of variational inequalities
    Leontiev, A
    Herskovits, J
    STRUCTURAL OPTIMIZATION, 1997, 14 (2-3) : 100 - 107
  • [2] OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES
    Bensoussan, Alain
    Chandrasekaran, Keerthi
    Turi, Janos
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (04) : 203 - 220
  • [3] OPTIMAL-CONTROL FOR VARIATIONAL INEQUALITIES
    PATRONE, F
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (03) : 373 - 388
  • [4] Optimal control of parabolic variational inequalities
    Ito, Kazufumi
    Kunisch, Karl
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (04): : 329 - 360
  • [5] Optimal control and approximation of variational inequalities
    Kamil, H
    Anna, J
    KYBERNETES, 2002, 31 (9-10) : 1401 - 1408
  • [6] Optimal control of elliptic variational inequalities
    Ito, K
    Kunisch, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (03): : 343 - 364
  • [7] Optimal Control of Stochastic Variational Inequalities
    Grecksch, Wilfried
    Khan, Akhtar A.
    Sama, Miguel
    Tammer, Christiane
    MINIMAX THEORY AND ITS APPLICATIONS, 2024, 9 (01): : 117 - 128
  • [8] Optimal Control of Elliptic Variational Inequalities
    K. Ito
    K. Kunisch
    Applied Mathematics and Optimization, 2000, 41 : 343 - 364
  • [9] Globally Convergent Interior Point Methods for Variational Inequalities in Unbounded Sets
    徐庆
    于波
    冯果忱
    李荣华
    Northeastern Mathematical Journal, 2002, (01) : 9 - 12
  • [10] INTERIOR-POINT ALGORITHMS FOR MONOTONE AFFINE VARIATIONAL-INEQUALITIES
    CAO, M
    FERRIS, MC
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 83 (02) : 269 - 283