Optimal Control of Stochastic Variational Inequalities

被引:0
|
作者
Grecksch, Wilfried [1 ]
Khan, Akhtar A. [2 ]
Sama, Miguel [3 ]
Tammer, Christiane [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Germany
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY USA
[3] Univ Nacl Educ Distancia, Dept Matemat Aplicada, Madrid, Spain
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2024年 / 9卷 / 01期
关键词
Stochastic optimal control; partial differential equations with random data; stochastic approximation; regularization; penalization; BOUNDARY-VALUE-PROBLEMS; INVERSE PROBLEMS; COLLOCATION; CONSTRAINTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on the optimal control problem for elliptic stochastic variational inequalities where the diffusivity coefficient and the source term are random fields. Besides recalling the existence theorem for the stochastic elliptic variational inequalities, we also give an existence result for the optimal control problem, which is posed as a stochastic optimization problem. We conduct two preliminary computational experiments by coupling the penalty method with the stochastic approximation approach.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条
  • [1] OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES
    Bensoussan, Alain
    Chandrasekaran, Keerthi
    Turi, Janos
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (04) : 203 - 220
  • [2] Optimal Algorithms for Decentralized Stochastic Variational Inequalities
    Kovalev, Dmitry
    Beznosikov, Aleksandr
    Sadiev, Abdurakhmon
    Persiianov, Michael
    Richtarik, Peter
    Gasnikov, Alexander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] OPTIMAL-CONTROL FOR VARIATIONAL INEQUALITIES
    PATRONE, F
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (03) : 373 - 388
  • [4] Optimal control of parabolic variational inequalities
    Ito, Kazufumi
    Kunisch, Karl
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (04): : 329 - 360
  • [5] Optimal control and approximation of variational inequalities
    Kamil, H
    Anna, J
    KYBERNETES, 2002, 31 (9-10) : 1401 - 1408
  • [6] Optimal control of elliptic variational inequalities
    Ito, K
    Kunisch, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (03): : 343 - 364
  • [7] Optimal Control of Elliptic Variational Inequalities
    K. Ito
    K. Kunisch
    Applied Mathematics and Optimization, 2000, 41 : 343 - 364
  • [8] Notes on random optimal control equilibrium problem via stochastic inverse variational inequalities
    Barbagallo, Annamaria
    Pansera, Bruno Antonio
    Ferrara, Massimiliano
    COMPUTATIONAL MANAGEMENT SCIENCE, 2024, 21 (01)
  • [9] OPTIMAL-CONTROL FOR VARIATIONAL-INEQUALITIES
    FRIEDMAN, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (03) : 439 - 451
  • [10] OPTIMAL CONTROL PROBLEM FOR PARABOLIC VARIATIONAL INEQUALITIES
    汪更生
    Acta Mathematica Scientia, 2001, (04) : 509 - 525