Projectively Equivalent Riemannian Spaces as Quasi-bi-Hamiltonian Systems

被引:0
|
作者
M. Crampin
机构
[1] The Open University,Department of Applied Mathematics
来源
关键词
projective equivalence; quasi-bi-Hamiltonian system; Hamilton–Jacobi separability;
D O I
暂无
中图分类号
学科分类号
摘要
The class of Riemannian spaces admitting projectively, or geodesically, equivalent metrics is very closely related to a certain class of spaces for which the Hamilton–Jacobi equation for geodesics is separable. This fact is established, and its consequences explored, by showing that when a Riemannian space has a projectively equivalent metric its geodesic flow is a quasi-bi-Hamiltonian system. The existence of involutive first integrals of the geodesic flow, quadratic in the momenta, follows by a standard type of argument. When these integrals are independent they generate a Stäckel system.
引用
收藏
页码:237 / 248
页数:11
相关论文
共 50 条
  • [1] Projectively equivalent Riemannian spaces as quasi-bi-Hamiltonian systems
    Crampin, M
    ACTA APPLICANDAE MATHEMATICAE, 2003, 77 (03) : 237 - 248
  • [2] Projectively equivalent Riemannian spaces as quasi-bi-Hamiltonian systems
    Crampin, M.
    Acta Appl Math, 3 (237-248):
  • [3] Quasi-bi-Hamiltonian systems and separability
    Morosi, C
    Tondo, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2799 - 2806
  • [4] Families of quasi-bi-Hamiltonian systems and separability
    Zeng, YB
    Ma, WX
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4452 - 4473
  • [5] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C.
    Tondo, G.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247 (1-2): : 59 - 64
  • [6] Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
    Tondo, G
    Morosi, C
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 255 - 266
  • [7] Quasi-bi-Hamiltonian systems: Why the pfaffian case?
    Boualem, H.
    Brouzet, R.
    Rakotondralambo, J.
    PHYSICS LETTERS A, 2006, 359 (06) : 559 - 563
  • [8] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R
    Caboz, R
    Rabenivo, J
    Ravoson, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2069 - 2076
  • [9] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C
    Tondo, G
    PHYSICS LETTERS A, 1998, 247 (1-2) : 59 - 64
  • [10] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R.
    Caboz, R.
    Rabenivo, J.
    Ravoson, V.
    Journal of Physics A: Mathematical and General, 29 (09):