Global search in a noncovex optimal control problem

被引:0
|
作者
A. S. Strekalovsky
M. V. Yanulevich
机构
[1] Russian Academy of Sciences,Institute for System Dynamics and Control Theory, Siberian Branch
来源
Journal of Computer and Systems Sciences International | 2013年 / 52卷
关键词
Optimal Control Problem; System Science International; Global Search; Local Search Method; Numerical Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
A nonconvex optimal control problem with the Bolza objective functional is considered. The objective functional is specified by functions represented by the difference of two convex functions (Alexandrov functions). New necessary and sufficient global optimality conditions for minimizing sequences of controls are proved. These conditions provide the basis for a theoretical method for finding global optimal controls; the global convergence of this method is proved.
引用
收藏
页码:893 / 908
页数:15
相关论文
共 50 条
  • [41] Optimal obstacle control problem
    Zhu Li
    Li Xiu-hua
    Guo Xing-ming
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (05) : 559 - 569
  • [42] Optimal obstacle control problem
    朱砾
    李秀华
    郭兴明
    AppliedMathematicsandMechanics(EnglishEdition), 2008, (05) : 559 - 569
  • [43] Optimal Control for an Obstruction Problem
    B. D. Craven
    Journal of Optimization Theory and Applications, 1999, 100 : 435 - 439
  • [44] On Solving the Optimal Control Problem
    I. S. Polyanskii
    N. S. Arkhipov
    S. Yu. Misyurin
    Automation and Remote Control, 2019, 80 : 66 - 80
  • [45] OPTIMAL CONTROL FOR THE THERMISTOR PROBLEM
    Hoemberg, D.
    Meyer, C.
    Rehberg, J.
    Ring, W.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (05) : 3449 - 3481
  • [46] Optimal control for an obstruction problem
    Craven, BD
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 100 (02) : 435 - 439
  • [47] ON A PROBLEM IN THE OPTIMAL-CONTROL
    ZORICH, VA
    MAIKOV, EV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (06): : 71 - 75
  • [48] Homogenization of an optimal control problem
    Kesavan, S
    Paulin, JSJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) : 1557 - 1573
  • [49] Optimal obstacle control problem
    Li Zhu
    Xiu-hua Li
    Xing-ming Guo
    Applied Mathematics and Mechanics, 2008, 29 : 559 - 569
  • [50] Optimal control in a macroeconomic problem
    Bulgakov V.K.
    Shatov G.L.
    Computational Mathematics and Mathematical Physics, 2007, 47 (8) : 1253 - 1267